Skip to main content
Log in

Noise effect on the signal transmission in an underdamped fractional coupled system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The signal transmission phenomenon in an underdamped fractional system composed of two harmonically coupled particles, but only the first particle, which is driven by a periodic force, is studied. We obtain the analytical expressions for the steady-state response of the two coupled particles by applying the stochastic averaging method and define the signal transmission factor to characterize signal transmission efficiency. We analyze the impact of noise on signal transmission efficiency and provide the discriminant criterion for the emergence of the signal transmission enhancement phenomenon. We also analyze the resonance behavior of the signal transmission factor and provide the discriminant criterion for the emergence of different types of resonance behavior based on system parameters. We draw the phase diagrams for varying resonance behavior versus different parameters and study the influences of the parameters on resonance behavior. It is found that the coupling strength and fractional-order exert important influences on the signal transmission efficiency and resonance behavior, and the fractional coupled system exhibits complicated dynamic behaviors than the integer coupled system. Lastly, numerical simulations for the signal transmission factor \(\eta \), and the output signal-to-noise ratio (SNR) transmission gain \(\text {SNR}_{\eta }\) are performed. We can control signal transmission efficiency and resonance behavior within a certain range by understanding the effects of system parameters on the underdamped fractional coupled system, and it has potential applications in modern science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Van den Broeck, C., Parrondo, J.M.R., Toral, R., Kawai, R.: Nonequilibrium phase transitions induced by multiplicative noise. Phys. Rev. E. 55(4), 4084–4094 (1997)

    Google Scholar 

  2. Levkivskyi, I.P., Sukhorukov, E.V.: Noise-induced phase transition in the electronic Mach–Zehnder interferometer. Phys. Rev. Lett. 103, 1–4 (2009)

    Google Scholar 

  3. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A Math. Gen. 14, L453–L457 (1981)

    MathSciNet  Google Scholar 

  4. Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223–287 (1998)

    Google Scholar 

  5. Cruz, I.T.J.M., Parmananda, P., Rivera, M.: Stochastic resonance via parametric adaptation: experiments and numerics. Phys. Rev. E 060202(R), 1–5 (2019)

    Google Scholar 

  6. Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78(5), 775–778 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Lee, S.G., Neiman, A., Kim, S.: Coherence resonance in a Hodgkin–Huxley neuron. Phys. Rev. E. 57(3), 3292–3297 (1998)

    Google Scholar 

  8. Wu, J., Ma, S.J.: Coherence resonance of the spiking regularity in a neuron under electromagnetic radiation. Nonlinear Dyn. 96(3), 1895–1908 (2019)

    MathSciNet  Google Scholar 

  9. Zaikin, A.A., Lopez, L., Baltanas, J.P., Kurths, J., Sanjuan, M.A.F.: Vibrational resonance in a noise-induced structure. Phys. Rev. E. 66(011106), 1–4 (2002)

    Google Scholar 

  10. Vincent, U.E., Roy-Layinde, T.O., Popoola, O.O., Adesina, P.O., McClintock, P.V.E.: Vibrational resonance in an oscillator with an asymmetrical deformable potential. Phys. Rev. E 98(062203), 1–11 (2018)

    Google Scholar 

  11. Liu, H.G., Liu, X.L., Yang, J.H., Sanjuan, M.A.F., Cheng, G.: Detecting the weak high-frequency character signal by vibrational resonance in the Duffing oscillator. Nonlinear Dyn. 89(4), 2621–2628 (2017)

    MathSciNet  Google Scholar 

  12. Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Hanggi, P., Marchesoni, F.: Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81, 1–56 (2009)

    Google Scholar 

  14. Goychuk, I., Kharchenko, V.: Fractional Brownian motors and stochastic resonance. Phys. Rev. E 85(051131), 1–6 (2012)

    Google Scholar 

  15. Veigel, C., Schmidt, C.F.: Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011)

    Google Scholar 

  16. Julicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys. 69(4), 1269–1282 (1997)

    Google Scholar 

  17. Bulsara, A.R., Maren, A.J., Schmera, G.: Single effective neuron: dendritic coupling effects and stochastic resonance. Biol. Cybern. 70, 145–156 (1993)

    MATH  Google Scholar 

  18. Shim, S.B., Imboden, M., Mohanty, P.: Synchronized oscillation in coupled nanomechanical oscillators. Science 316, 95–99 (2007)

    Google Scholar 

  19. Bulsara, A.R., Schmera, G.: Stochastic resonance in globally coupled nonlinear oscillators. Phys. Rev. E 47(5), 3734–3737 (1993)

    Google Scholar 

  20. Inchiosa, M.E., Bulsara, A.R.: Nonlinear dynamic elements with noisy sinusoidal forcing: enhancing response via nonlinear coupling. Phys. Rev. E 52(1), 327–339 (1995)

    Google Scholar 

  21. Lindner, J.F., Meadows, B.K., Ditto, W.L.: Array enhanced stochastic resonance and spatiotemporal synchronization. Phys. Rev. Lett. 75(3), 3–6 (1995)

    Google Scholar 

  22. Locher, M., Johnson, G.A., Hunt, E.R.: Spatiotemporal stochastic resonance in a system of coupled diode resonators. Phys. Rev. Lett. 77(23), 4698–4701 (1996)

    Google Scholar 

  23. Yang, B., Zhang, X., Zhang, L., Luo, M.K.: Collective behavior of globally coupled Langevin equations with colored noise in the presence of stochastic resonance. Phys. Rev. E 94, 022119 (2016)

    MathSciNet  Google Scholar 

  24. Lai, L., Zhang, L., Yu, T.: Collective behaviors in globally coupled harmonic oscillators with fluctuating damping coefficient. Nonlinear Dyn. 97, 2231–2248 (2019)

    MATH  Google Scholar 

  25. Kadar, S., Wang, J., Showalter, K.: Noise-supported travelling waves in sub-excitable media. Nature 391, 770–772 (1998)

    Google Scholar 

  26. Locher, M., Cigna, D., Hunt, E.R.: Noise sustained propagation of a signal in coupled bistable electronic elements. Phys. Rev. Lett. 80(23), 5212–5215 (1998)

    Google Scholar 

  27. Zhang, Y., Hu, G., Gammaitoni, L.: Signal transmission in one-way coupled bistable systems: noise effect. Phys. Rev. E 58(3), 2952–2956 (1998)

    Google Scholar 

  28. Jothimurugan, R., Thamilmaran, K., Rajasekar, S., Sanjuan, M.A.F.: Multiple resonance and anti-resonance in coupled Duffing oscillators. Nonlinear Dyn. 83(4), 1803–1814 (2016)

    MathSciNet  Google Scholar 

  29. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51(2), 294–298 (1984)

    MATH  Google Scholar 

  30. Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23(6), 918–925 (1985)

    MATH  Google Scholar 

  31. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  32. Mason, T.G., Weitz, D.A.: Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250–1253 (1995)

    Google Scholar 

  33. Weeks, E.R., Crocker, J.C., Levitt, A.C., Schofield, A., Weitz, D.A.: Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287(5453), 627–631 (2000)

    Google Scholar 

  34. Gu, Q., Schiff, E.A., Grebner, S., Wang, F., Schwarz, R.: Non-Gaussian transport measurements and the Einstein relation in amorphous silicon. Phys. Rev. Lett. 76, 3196–3199 (1996)

    Google Scholar 

  35. Chen, W., Sun, H.G., Li, X.C.: Modeling the Fractional Derivative Mechanics and Engineering Problems. Science Press, Beijing (2010)

    Google Scholar 

  36. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63(1), 1–52 (2010)

    Google Scholar 

  37. Yang, F., Zhu, K.Q.: On the definition of fractional derivatives in rheology. Theor. Appl. Mech. Lett. 1(1), 1–4 (2011)

    Google Scholar 

  38. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    MATH  Google Scholar 

  39. Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9–12 (2010)

    MATH  Google Scholar 

  40. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–4), 323–337 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)

    MATH  Google Scholar 

  43. Droste, F., Lindner, B.: Integrate-and-fire neurons driven by asymmetric dichotomous noise. Biol. Cybern. 108, 825–843 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Reimann, P., Elston, T.C.: Kramers rate for thermal plus dichotomous noise applied to ratchets. Phys. Rev. Lett. 77(27), 5328–5331 (1996)

    Google Scholar 

  45. Si, M., Conrad, N., Shin, S., Gu, J., Zhang, J., Alam, M., Ye, P.: Low-frequency noise and random telegraph noise on near-ballistic III-V MOSFETs. IEEE Trans. Electron Dev. 62, 3508–3515 (2015)

    Google Scholar 

  46. Kim, C., Lee, E.K., Talkner, P.: Numerical method for solving stochastic differential equations with dichotomous noise. Phys. Rev. E 73(026101), 1–4 (2006)

    Google Scholar 

  47. Zhong, S.C., Lv, W.Y., Ma, H., Zhang, L.: Collective stochastic resonance behavior in the globally coupled fractional oscillator. Nonlinear Dyn. 94(2), 905–923 (2018)

    Google Scholar 

  48. Yu, T., Zhang, L., Ji, Y.D., Lai, L.: Stochastic resonance of two coupled fractional harmonic oscillators with fluctuating mass. Commun. Nonlinear Sci. Numer. Simul. 72, 26–38 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Zhong, S.C., Wei, K., Gao, S.L., Ma, H.: Stochastic resonance in a linear fractional Langevin equation. J. Stat. Phys. 150, 867–880 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Zhong, S.C., Ma, H., Peng, H., Zhang, L.: Stochastic resonance in a harmonic oscillator with fractional-order external and intrinsic dampings. Nonlinear Dyn. 82(1–2), 535–545 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Gitterman, M.: Classical harmonic oscillator with multiplicative noise. Physica A 352, 309–334 (2005)

    Google Scholar 

  52. Li, Q.S., Liu, Y.: Enhancement and sustainment of internal stochastic resonance in unidirectional coupled neural system. Phys. Rev. E 73, 016218 (2006)

    Google Scholar 

  53. Xiao, Y.Z., Tang, S.F., Sun, Z.K.: The role of multiplicative noise in complete synchronization of bidirectionally coupled chain. Eur. Phys. J. B 87, 134–141 (2014)

    Google Scholar 

  54. Gomez-Ordonez, J., Casado, J.M., Morillo, M.: Arrays of noisy bistable elements with nearest neighbor coupling: equilibrium and stochastic resonance. Eur. Phys. J. B 82(2), 179–187 (2011)

    Google Scholar 

  55. Lindner, J.F., Meadows, B.K., Ditto, W.L.: Scaling laws for spatiotemporal synchronization and array enhanced stochastic resonance. Phys. Rev. E 53(3), 2081–2086 (1996)

    Google Scholar 

  56. Kenfack, A., Singh, K.P.: Stochastic resonance in coupled underdamped bistable systems. Phys. Rev. E 82, 046224 (2010)

    Google Scholar 

  57. Xu, Y., Wu, J., Zhang, H.Q., Ma, S.J.: Stochastic resonance phenomenon in an underdamped bistable system driven by weak asymmetric dichotomous noise. Nonlinear Dyn. 70(1), 531–539 (2012)

    MathSciNet  Google Scholar 

  58. Zhang, L., Lai, L., Peng, H., Zhong, S.C.: Stochastic and superharmonic stochastic resonances of a confined overdamped harmonic oscillator. Phys. Rev. E 97, 012147 (2018)

    Google Scholar 

  59. Li, J.H.: Enhancement and weakening of stochastic resonance for a coupled system. Chaos 21, 043115 (2011)

    MATH  Google Scholar 

  60. Li, J.H., Chen, Q.H., Zhou, X.F.: Transport and its enhancement caused by coupling. Phys. Rev. E 81, 041104 (2010)

    Google Scholar 

  61. Lv, J.P., Liu, H., Chen, Q.H.: Phase transition in site-diluted Josephson junction arrays: a numerical study. Phys. Rev. B 79, 104512 (2009)

    Google Scholar 

  62. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos 19, 023112 (2009)

    Google Scholar 

  63. Hendricks, A.G., Epureanu, B.I., Meyhofer, E.: Collective dynamics of kinesin. Phys. Rev. E 79, 031929 (2009)

    MathSciNet  Google Scholar 

  64. Stukalin, E.B., Phillips III, H., Kolomeisky, A.B.: Coupling of two motor proteins: a new motor can move faster. Phys. Rev. Lett. 94, 238101 (2005)

    Google Scholar 

  65. Shapiro, V.E., Loginov, V.M.: Formulae of differentiation and their use for solving stochastic equations. Physica A 91(3–4), 563–574 (1978)

    MathSciNet  Google Scholar 

  66. Soika, E., Mankin, R.: Trichotomous-noise-induced stochastic resonance for a fractional oscillator. In: Advances in biomedical research. 978-960-474-164-9, pp. 440–445 (2010)

  67. Mitaim, S., Kosko, B.: Adaptive stochastic resonance. Proc. IEEE 86, 2152–2183 (1998)

    Google Scholar 

Download references

Acknowledgements

This study has been supported by the National Natural Science Foundation of China (Grant Numbers 11501386 and 11401405) and the Sichuan Science and Technology Program (Grant Number 2017JY0219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix for section 4.1

Appendix for section 4.1

Coefficients \(a_i, b_i, c_i, i=1,2\) of Eq. (18) are as follow:

\(a_1=[k^2+b^4+(\gamma b^\alpha )^2]+2kb^2\cos (2\theta )+2k\gamma b^\alpha \cos (\alpha \theta )+2\gamma b^{2+\alpha }\cos [(2-\alpha )\theta ], \)

\(a_2=\varepsilon ^2,\)

\(b_1=[2k{\widetilde{g}}_0+2b^2{\widetilde{g}}_2+2\gamma b^\alpha {\widetilde{g}}_3+2k{\widetilde{F}}_{11}]+[2(k{\widetilde{g}}_2+b^2{\widetilde{g}}_{0})+2b^2{\widetilde{F}}_{11}]\cos (2\theta ) +[2(k{\widetilde{g}}_{3}+\gamma b^\alpha {\widetilde{g}}_{0})+2\gamma b^\alpha {\widetilde{F}}_{11}]\cos (\alpha \theta )+2(b^2{\widetilde{g}}_{3}+\gamma b^\alpha {\widetilde{g}}_{2})\cos [(2-\alpha )\theta ]+2b^2{\widetilde{F}}_{12}\sin (2\theta )+2\gamma b^\alpha {\widetilde{F}}_{12}\sin (\alpha \theta ),\)

\(b_2=(-2\varepsilon )({\widetilde{h}}_{0}+{\widetilde{F}}_{31}),\)

\(c_1=[{\widetilde{g}}_{0}^2+{\widetilde{g}}_{2}^2+{\widetilde{g}}_{3}^2+2{\widetilde{g}}_{0}{\widetilde{F}}_{11}+{\widetilde{F}}_{11}^2+{\widetilde{F}}_{12}^2]+[2{\widetilde{g}}_{0}{\widetilde{g}}_{2}+2{\widetilde{g}}_{2}{\widetilde{F}}_{11}]\cos (2\theta )+[2{\widetilde{g}}_{0}{\widetilde{g}}_{3}+2{\widetilde{g}}_{3}{\widetilde{F}}_{11}]\cos (\alpha \theta )+2{\widetilde{g}}_{2}{\widetilde{g}}_{3}\cos [(2-\alpha )\theta ]+2{\widetilde{g}}_{2}{\widetilde{F}}_{12}\sin (2\theta )+2{\widetilde{g}}_{3}{\widetilde{F}}_{12}\sin (\alpha \theta ),\)

\(c_2={\widetilde{h}}_{0}^2+2{\widetilde{h}}_{0}{\widetilde{F}}_{31}+{\widetilde{F}}_{31}^2+{\widetilde{F}}_{32}^2, \)

\(k=\omega _0^2+\varepsilon ,\)

\(b=\sqrt{\lambda ^2+\Omega ^2},\)

\(\theta =\arctan (\Omega /\lambda ), \)

\(g_1=(\varepsilon ^2-k^2)\gamma \Omega ^\alpha , \)

\(g_4=b^4(\Omega ^2-k), \)

\(g_5=(\gamma b^\alpha )^2(\Omega ^2-k),\)

\(g_6=2\gamma b^{2+\alpha }(\Omega ^2-k),\)

\(g_7=2k\gamma \Omega ^\alpha b^2,\)

\(g_8=2k\gamma ^2(\Omega b)^\alpha \)

\(g_9=\gamma \Omega ^\alpha b^4,\)

\(g_{10}=\gamma ^3(\Omega b^2)^\alpha ,\)

\(g_{11}=2(\gamma b)^2(\Omega b)^\alpha , \)

\(h_1=-2\varepsilon kb^2,\)

\(h_2=-2\varepsilon k\gamma b^\alpha ,\)

\(h_3=-\varepsilon b^4,\)

\(h_4=-\varepsilon (\gamma b^\alpha )^2,\)

\(h_5=-2\varepsilon \gamma b^{2+\alpha },\)

\({\widetilde{g}}_0=(k-\Omega ^2)(\varepsilon ^2-k^2),\)

\({\widetilde{g}}_2=2kb^2(\Omega ^2-k),\)

\({\widetilde{g}}_3=2k\gamma b^\alpha (\Omega ^2-k),\)

\({\widetilde{h}}_0=\varepsilon (\varepsilon ^2-k^2),\)

\({\widetilde{F}}_{11}=g_1\cos (\pi \alpha /2)+g_4\cos (4\theta )+g_5\cos (2\alpha \theta )+g_6\cos (2\theta +\alpha \theta )-g_7\cos (2\theta +\pi \alpha /2)-g_8\cos (\pi \alpha /2+\alpha \theta )-g_9\cos (\pi \alpha /2+4\theta )-g_{10}\cos (\pi \alpha /2+2\alpha \theta )-g_{11}\cos (2\theta +\alpha \theta +\pi \alpha /2),\)

\({\widetilde{F}}_{12}=g_1\sin (\pi \alpha /2)+g_4\sin (4\theta )+g_5\sin (2\alpha \theta )+g_6\sin (2\theta +\alpha \theta )-g_7\sin (2\theta +\pi \alpha /2)-g_8\sin (\pi \alpha /2+\alpha \theta )-g_9\sin (\pi \alpha /2+4\theta )-g_{10}\sin (\pi \alpha /2+2\alpha \theta )-g_{11}\sin (2\theta +\alpha \theta +\pi \alpha /2),\)

\({\widetilde{F}}_{31}=h_1\cos (2\theta )+h_2\cos (\alpha \theta )+h_3\cos (4\theta )+h_4\cos (2\alpha \theta )+h_5\cos (2\theta +\alpha \theta ),\)

\({\widetilde{F}}_{32}=h_1\sin (2\theta )+h_2\sin (\alpha \theta )+h_3\sin (4\theta )+h_4\sin (2\alpha \theta )+h_5\sin (2\theta +\alpha \theta ).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Zhang, L. Noise effect on the signal transmission in an underdamped fractional coupled system. Nonlinear Dyn 102, 2077–2102 (2020). https://doi.org/10.1007/s11071-020-06042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06042-2

Keywords

Navigation