Skip to main content
Log in

Multiscale permutation mutual information quantify the information interaction for traffic time series

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The purpose of this study was to introduce a method in extracting and quantifying the information flow in complex system, which takes into account the temporal structure of the time series at multiple scales. It is important that the method should be able to reflect the intrinsic mechanism of information interaction faithfully. The proposed multiscale permutation mutual information (MPMI) method studies the mutual information based on permutation pattern and multiscale concept from multiscale sample entropy and is initially tested on artificially generated signals for proof of concept by comparing the MPMI results of the iterative amplitude adjusted Fourier transform surrogates and the original series. It is subsequently applied to quantify the information interaction of traffic time series. MPMI results can detect the relationship between neighboring detectors and the effect of traffic accidents on information interaction between speed and volume. MPMI method uncovers the information interaction and provides valuable insight into the underlying mechanisms in traffic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Leutzbach, D.I.W.: Introduction to the Theory of Traffic Flow. Springer, New York (1988)

    Google Scholar 

  2. Kerner, B.S.: The Physics of Traffic. Springer, New York (2004)

    Google Scholar 

  3. Shang, P., Li, X., Santi, K.: Chaotic analysis of traffic time series. Chaos Solitons Fractals 25(1), 121–128 (2005)

    MATH  Google Scholar 

  4. Li, X., Gao, Z.Y., Zheng, J.F., Jia, B.: Network analysis of the evolution of traffic flow with speed information. Int. J. Mod. Phys. C 21(02), 1001504 (2014)

    Google Scholar 

  5. Shang, P., Li, X., Santi, K.: Nonlinear analysis of traffic time series at different temporal scales. Phys. Lett. A 357, 314–318 (2006)

    MATH  Google Scholar 

  6. Podobnik, B., Stanley, H.E.: Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys. Rev. Lett. 100(8), 084102 (2008)

    Google Scholar 

  7. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969)

    MATH  Google Scholar 

  8. Hempel, S., Koseska, A., Kurths, J., Nikoloski, Z.: Inner composition alignment for inferring directed networks from short time series. Phys. Rev. Lett. 107(5), 3214–3219 (2011)

    Google Scholar 

  9. Steuer, R., Kurths, J., Daub, C.O., Weise, J., Selbig, J.: The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(Suppl 2), S231–S240 (2002)

    Google Scholar 

  10. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  12. Kolmogorov, A.N.: Logical basis for information theory and probability theory. IEEE Trans. Inf. Theor. 14, 662–664 (1968)

    MathSciNet  MATH  Google Scholar 

  13. Liu, L.Z., Qian, X.Y., Lu, H.Y.: Cross-sample entropy of foreign exchange time series. Physica A Stat. Mech. Appl. 389(21), 4785–4792 (2010)

    Google Scholar 

  14. Shi, W., Shang, P.: Cross-sample entropy statistic as a measure of synchronism and cross-correlation of stock markets. Nonlinear Dyn. 71(3), 539–554 (2013)

    MathSciNet  Google Scholar 

  15. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)

    Google Scholar 

  16. Kwon, O., Yang, J.S.: Information flow between stock indices. EPL Europhys. Lett. 82(6), 68003 (2008)

    Google Scholar 

  17. Na, X., Shang, P., Kamae, S.: Modeling traffic flow correlation using DFA and DCCA. Nonlinear Dyn. 61(1–2), 207–216 (2010)

    MATH  Google Scholar 

  18. Hajian, S., Movahed, M.S.: Multifractal detrended cross-correlation analysis of sunspot numbers and river flow fluctuations. Physica A Stat. Mech. Appl. 389(21), 4942–4957 (2010)

    Google Scholar 

  19. Xue, G., Hu, Z., Tianhai, T., Blau, B.M.: Development of stock correlation networks using mutual information and financial big data. PLoS ONE 13(4), e0195941 (2018)

    Google Scholar 

  20. Hosseini, S.H., Moshiri, B., Rahimi-Kian, A., Araabi, B.N.: Short-term traffic flow forecasting by mutual information and artificial neural networks. In: 2012 IEEE International Conference on Industrial Technology, Athens, pp. 1136–1141 (2012)

  21. Jeong, J., Gore, J.C., Peterson, B.S.: Mutual information analysis of the EEG in patients with Alzheimer’s disease. Clin. Neurophysiol. 112(5), 827–835 (2001)

    Google Scholar 

  22. Butte, A., Kohane, I.S.: Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 5, 415–426 (2000)

    Google Scholar 

  23. Hlavác̆ková-Schindler, K., Palus̆, M., Vejmelka, M., Bhattacharya, J.: Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441(1), 1–46 (2007)

    Google Scholar 

  24. Franois, D., Rossi, F., Wertz, V., Verleysen, M.: Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70(7–9), 1276–1288 (2007)

    Google Scholar 

  25. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Google Scholar 

  26. Cao, Y., Tung, W., Gao, J.B.: Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 70(4 Pt 2), 046217 (2004)

    MathSciNet  Google Scholar 

  27. Xia, J., Shang, P., Wang, J.: Permutation and weighted-permutation entropy analysis for the complexity of nonlinear time series. Commun. Nonlinear Sci. Numer. Simul. 31(1), 60–68 (2015)

    MATH  Google Scholar 

  28. Zunino, L., Zanin, M., Tabak, B.M., Pérez, D.G., Rosso, O.A.: Forbidden patterns, permutation entropy and stock market inefficiency. Physica A 388(14), 2854–2864 (2009)

    Google Scholar 

  29. Yan, R., Liu, Y., Gao, R.X.: Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines. Mech. Sys. Signal Process. 29, 474–484 (2012)

    Google Scholar 

  30. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71(2), 021906 (2005)

    MathSciNet  Google Scholar 

  31. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)

    Google Scholar 

  32. Michaels, G., Carr, D., Askenazi, M., Fuhrman, S., Wen, X., Somogyi, R.: Cluster analysis and data visualization of largescale gene expression data. Pac. Symp. Biocomput. 3, 42–53 (1998)

    Google Scholar 

  33. Ribeiro, H.V., Zunino, L., Mendes, R.S., Lenzi, E.K.: Complexity-entropy causality plane: a useful approach for distinguishing songs. Phys. A 391, 2421–2428 (2012)

    Google Scholar 

  34. Henon, M.: A two-dimensional mapping with a strange attractor. Comm. Math. Phys. 50, 69–77 (1976)

    MathSciNet  MATH  Google Scholar 

  35. Schreiber, T., Schmitz, A.: Surrogate time series. Physica D Nonlinear Phenom. 142(3), 346–382 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Schreiber, T., Schmitz, A.: Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635–638 (1996)

    Google Scholar 

  37. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the tisean package. Chaos 9(2), 413–435 (1999)

    MATH  Google Scholar 

  38. Yu, X.: Variable structure control approach for controlling chaos. Chaos Solitons Fractals 8, 1577–1586 (1997)

    Google Scholar 

  39. Agiza, H.N., Yassen, M.T.: Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278, 191–197 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Bhalekar, S., Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control. Commun. Nonlinear Sci. Numer. Simul. 15, 3536–3546 (2010)

    MATH  Google Scholar 

  41. Podobnik, B., Horvatic, D., Ng, A.L., Stanley, H.E., Ivanov, P.C.: Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes. Phys. A 387, 3954–3959 (2008)

    MathSciNet  Google Scholar 

  42. Hosking, J.R.M.: Fractional differencing. Biometrika 68, 165–176 (1981)

    MathSciNet  MATH  Google Scholar 

  43. Hoaglin, D.C., Mosteller, F., Tukey, J.W.: Understanding Robust and Exploratory Data Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  44. Wilcox, R.R.: Introduction to Robust Estimation and Hypothesis Testing. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  45. Gharehbaghi, A., Lindén, M.: A deep machine learning method for classifying cyclic time series of biological signals using time-growing neural network. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4102–4115 (2018)

    Google Scholar 

Download references

Acknowledgements

The financial support from National Key Technologies R&D Program (2017YFB131201303-08) and National Natural Science Foundation of China (11790281) are gratefully acknowledged.

Funding

This study is funded by National Key Technologies R&D Program (2017YFB131201303-08) and National Natural Science Foundation of China (11790281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Wang, X., Li, Q. et al. Multiscale permutation mutual information quantify the information interaction for traffic time series. Nonlinear Dyn 102, 1909–1923 (2020). https://doi.org/10.1007/s11071-020-05981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05981-0

Keywords

Navigation