Skip to main content
Log in

Dry-friction-induced self-excitation of a rectangular liquid-filled tank

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The self-excitation of spring–mass system subjected to dry friction has been studied for decades because of its interesting and complex nonlinear dynamics behaviors. In this paper, a fluid–structure interaction problem, which describes the dry-friction-induced self-excitation of a rectangular liquid-filled tank, is proposed here about how the liquid sloshing affects the tank’s motion. To study responses of both the tank and liquid in depth, an equivalent pendulum model is developed to consider the coupling effects of structure elasticity, liquid sloshing, and dry friction. Another model based on smoothed particle hydrodynamics (SPH) method is also built for studying the liquid behavior while sloshing. The multidimensional-mode convergence is first analyzed, and then, the parameter analysis on the mode and frequency of the tank–spring–liquid–belt coupled system is analytically and numerically conducted. With the increasing liquid, the first two modes of the system approach the structure frequency and liquid frequency, respectively, at first, and then, the tendency converts for the intersection of the structure frequency and liquid frequency. Based on Lyapunov stability theorem, the periodic motion of the liquid-filled tank, including the stick–slip phase and slip phase, is both caused by Hopf bifurcation of equilibrium point. The sloshing effect results in a comparatively smaller bifurcation point. When there is no liquid or a little liquid in tank, the system experiences a subcritical Hopf bifurcation. If the liquid mass is heavy enough, the subcritical Hopf bifurcation converts to the supercritical Hopf bifurcation. During the self-excitation motion, liquid in tank sometimes sloshes linearly with small-amplitude free-surface deformation based on SPH simulation and sometimes sloshes violently with impacting, turning, breaking, and merging. Results by equivalent model show that the swing range of the equivalent pendulum can even reach ± 25.0° at this time. Hence, the dry-friction-induced self-excitation of the liquid-filled tank with lots of interesting nonlinear dynamics behaviors is tightly parameter-related. Results show that the equivalent pendulum model and SPH model match each other well and have different advantages on handling the nonlinear dynamical behaviors of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Petrov, E.P.: Advanced analysis and optimization of nonlinear resonance vibrations in gas-turbine structures with friction and gaps. In: IUTAM Symposium on Emerging Trends in Rotor Dynamics. Springer Netherlands, Dordrecht (2011)

  2. Akay, A.: Acoustics of frictions. J. Acoust. Soc. Am. 111(4), 1525 (2002)

    Google Scholar 

  3. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos part I: mechanics of contact and friction. Appl. Mech. Rev. 47(7), 209 (1994)

    Google Scholar 

  4. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos part II: dynamics and modeling. Appl. Mech. Rev. 47(7), 227 (1994)

    Google Scholar 

  5. Anderson, J.R., Ferri, A.A.: Behavior of a single-degree-of-freedom system with a generalized friction law. J. Sound Vib. 140(2), 287–304 (1990)

    MATH  Google Scholar 

  6. Khizgiyayev, S.V.: Self-excited oscillations of a two-mass oscillator with dry “stick-slip” friction. J. Appl. Math. Mech. 71, 905–913 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Fan, J.J., Liu, T.Y., Chen, S.L.: Analysis of dynamical behaviors of a 2-DOF friction-induced oscillator with one-sided impact on a conveyor belt. Nonlinear Dyn. 97, 797–830 (2019)

    Google Scholar 

  8. Adams, G.G.: Self-excited oscillations in sliding with a constant friction coefficient—a simple model. J. Tribol. 118, 819–823 (1996)

    Google Scholar 

  9. Liu, C.-S., Chang, W.-T.: Frictional behaviour of a belt-driven and periodically excited oscillator. J. Sound Vib. 258(2), 247–268 (2002)

    Google Scholar 

  10. Galvanetto, U.: Some discontinuous bifurcations in a two-block stick-slip system. J. Sound Vib. 248(4), 635–669 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Rusinek, R., Warminski, J.: Attractor reconstruction of self-excited mechanical systems. Chaos Solitons Fractals 40, 172–182 (2009)

    MATH  Google Scholar 

  12. Bauer, H.F.: Mechanical model for the description of the liquid motion in a rectangular container. Lockheed-Co, RN ER-8559, June (1960)

  13. Bauer, H.F.: Nonlinear propellant sloshing in a rectangular container of infinite length. In: Developments in Theoretical and Applied Mechanics, pp. 725–760 (1967)

  14. Bauer, H.F.: Nonlinear mechanical model for the description of propellant sloshing. AIAA J. 4(9), 1662–1668 (1966)

    Google Scholar 

  15. Abramson, H.N., Chu, W.H., Kana, D.D.: Some studies of nonlinear lateral sloshing in rigid containers. NASA report CR-375, Jan (1966)

  16. Yue, B.Z., Zhu, L.M.: Hybrid control of liquid-filled spacecraft maneuvers by dynamics inversion and input shaping. AIAA J. 52(3), 618–626 (2014)

    Google Scholar 

  17. Cui, D.L., Yan, S.Z., Guo, X.S., Gao, R.X.: Parametric resonance of liquid sloshing in partially filled spacecraft tanks during the powered-flight phase of rocket. Aerosp. Sci. Technol. 35, 93–105 (2014)

    Google Scholar 

  18. Wang, T.S., Miao, N., Li, J.F.: Large-amplitude sloshing analysis and equivalent mechanical modeling in spherical tanks of spacecraft. J. Spacecr. Rockets 53(3), 500–506 (2016)

    Google Scholar 

  19. Lee, D.Y., Cho, M.H., Choi, H.L., Tahk, M.J.: Pendulum modeling of sloshing motion using particle swarm optimization. Int. J. Aeronaut. Space Sci. 20, 172–182 (2019)

    Google Scholar 

  20. Ibrahim, R.A., Pilipchuk, V.N., Ikeda, T.: Recent advances in liquid sloshing dynamics. Appl. Mech. Rev. 54(2), 133–199 (2001)

    Google Scholar 

  21. Vreeburg, J.P.B.: Dynamics and control of a spacecraft with a moving pulsating ball in a spherical cavity. Acta Astronaut. 20(2–8), 257–274 (1997)

    Google Scholar 

  22. Violeau, D.: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J. Hydraul. Res. 54(1), 1–26 (2016)

    Google Scholar 

  23. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17(1), 25–76 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Ye, T., Pan, D., Huang, C., Liu, M.: Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications. Phys. Fluids 31, 011301 (2019)

    Google Scholar 

  25. Shadloo, M.S., Oger, G., Le Touze, D.: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput. Fluids 136, 11–34 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Bertevas, E., Duc, T.T., Cao, K.L., Khoo, B.C., Thien, N.P.: A smoothed particle hydrodynamics (SPH) formulation of a two-phase mixture model and its application to turbulent sediment transport. Phys. Fluids 31(10), 103303 (2019)

    Google Scholar 

  27. Marsh, A.P., Prakash, M., Semercigil, S.E., Turan, O.F.: A shallow-depth sloshing absorber for structural control. J. Fluids Struct. 26, 780–792 (2010)

    MATH  Google Scholar 

  28. Marsh, A., Prakash, M., Semercigil, E., Turan, O.F.: A numerical investigation of energy dissipation with a shallow depth sloshing absorber. Appl. Math. Model. 34, 2941–2957 (2010)

    MATH  Google Scholar 

  29. Cao, X.Y., Ming, F.R., Zhang, A.M.: Sloshing in a rectangular tank based on SPH simulation. Appl. Ocean Res. 47, 241–254 (2014)

    Google Scholar 

  30. Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., Stansby, P.: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227, 8417–8436 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Souto-Iglesias, A., Delorme, L., Perez-Rojas, L., Abril-Perez, S.: Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics. Ocean Eng. 33, 1462–1484 (2006)

    Google Scholar 

  32. Cao, X.Y., Tao, L., Zhang, A.M., Ming, F.R.: Smoothed particle hydrodynamics (SPH) model for coupled analysis of a damaged ship with internal sloshing in beam seas. Phys. Fluids 31, 032103 (2019)

    Google Scholar 

  33. Sun, P.N., Colagrossi, A., Zhang, A.M.: Numerical simulation of self-propulsive motion of a fishlike swimming foil using the δ+-SPH model. Theor. Appl. Mech. Lett. 8, 115–125 (2018)

    Google Scholar 

  34. Fleissner, F., Lehnart, A., Eberhard, P.: Dynamic simulation of sloshing fluid and granular cargo in transport vehicle. Veh. Syst. Dyn. 48(1), 3–15 (2010)

    Google Scholar 

  35. Marsh, A.P., Prakash, M., Semercigil, E., Turan, O.F.: A study of sloshing absorber geometry for structural control with SPH. J. Fluids Struct. 27, 1165–1181 (2011)

    Google Scholar 

  36. Xu, R., Stansby, P., Laurence, D.: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228, 6703–6725 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82(12), 1013–1024 (1977)

    Google Scholar 

  38. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    MATH  Google Scholar 

  39. Monaghan, J.J., Lattanzio, J.C.: A refined particle method for astrophysical problems. Astron. Astrophys. 149(1), 135–143 (1985)

    MATH  Google Scholar 

  40. Morris, J.P.: A study of the stability properties of smooth particle hydrodynamics. Publ. Astron. Soc. Aust. 13(1), 97–102 (1996)

    Google Scholar 

  41. Shao, S.D., Lo, E.Y.M.: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 26, 787–800 (2003)

    Google Scholar 

  42. Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152, 584–607 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Yu, Q., Wang, T.S., Li, Z.: Rapid simulation of 3D liquid sloshing in the lunar soft-landing spacecraft. AIAA J. 57(10), 4504–4513 (2019)

    Google Scholar 

  44. Pilipchuk, V., Olejnik, P., Awrejcewicz, J.: Transient friction-induced vibrations in a 2-DOF model of brakes. J. Sound Vib. 344, 297–312 (2015)

    Google Scholar 

  45. Pilipchuk, V.N., Tan, C.A.: Creep-slip capture as a possible source of squeal during decelerated sliding. Nonlinear Dyn. 35, 259–285 (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 11732005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengqing Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The elements of coefficient matrix Af of the linearized dynamical equations for the tank–spring–liquid–belt coupled FSI system are:

$$ \begin{aligned} {\varvec{A}}_{\text{f12}} & = 1,\quad {\varvec{A}}_{\text{f21}} = - \frac{k}{m},\quad {\varvec{A}}_{\text{f22}} = \frac{{(M + m)g\left( {\mu_{\alpha } - 3\mu_{\beta } v_{0}^{2} } \right)}}{m} \\ {\varvec{A}}_{\text{f23}} & = \frac{{m_{1} g}}{m},\quad {\varvec{A}}_{\text{f24}} = \frac{{c_{1} }}{{ml_{1} }},\quad {\varvec{A}}_{\text{f34}} = 1 \\ {\varvec{A}}_{\text{f41}} & = \frac{k}{{ml_{1} }},\quad {\varvec{A}}_{\text{f42}} = - \frac{{(M + m)g\left( {\mu_{\alpha } - 3\mu_{\beta } v_{0}^{2} } \right)}}{{ml_{1} }}, \\ {\varvec{A}}_{\text{f43}} & = - \frac{(M + m)g}{{ml_{1} }},\quad {\varvec{A}}_{\text{f44}} = - \frac{{c_{1} (M + m)}}{{mm_{1} l_{1}^{2} }}. \\ \end{aligned} $$

Other elements in matrix Af are zero.

Appendix 2

The coefficients a in the characteristic equation are:

$$ \begin{aligned} a_{1} & = \frac{{\left[ {c_{1} - m_{1} gl_{1}^{2} \left( {\mu_{\alpha } - 3\mu_{\beta } v_{0}^{2} } \right)} \right] \cdot (M + m)}}{{m_{1} ml_{1}^{2} }} \\ a_{2} & = \frac{{kl_{1}^{2} m_{1} - g\left[ {c_{1} \left( {\mu_{\alpha } - 3\mu_{\beta } v_{0}^{2} } \right) - m_{1} l_{1} } \right] \cdot (M + m)}}{{m_{1} ml_{1}^{2} }} \\ a_{3} & = \frac{{c_{1} k - m_{1} g^{2} l_{1} \left( {\mu_{\alpha } - 3\mu_{\beta } v_{0}^{2} } \right) \cdot (M + m)}}{{m_{1} ml_{1}^{2} }} \\ a_{4} & = \frac{gk}{{ml_{1} }}. \\ \end{aligned} $$

Appendix 3

The coefficients b for the Hurwitz determinant Δ3 are:

$$ \begin{aligned} b_{1} & = - \frac{{(M + m)^{3} c_{1} g^{4} }}{{m_{1} m^{3} l_{1}^{3} }} \\ b_{2} & = (M + m)g^{2} m_{1} \left[ {\frac{{(M + m)^{2} c_{1}^{2} g}}{{m_{1}^{3} m^{3} l_{1}^{5} }} + (M + m)g\frac{{km_{1} l_{1} + (M + m)m_{1} g}}{{m_{1}^{2} m^{3} l_{1}^{2} }}} \right] \\ & \quad - \frac{{(M + m)^{2} g^{4} }}{{m^{2} l_{1}^{2} }} - \frac{{(M + m)^{2} g^{3} k}}{{m^{3} l_{1} }} + \frac{{(M + m)^{2} c_{1}^{2} g^{2} k}}{{m_{1}^{2} m^{3} l_{1}^{4} }} \\ b_{3} & = \frac{{2(M + m)c_{1} kg^{2} }}{{m_{1} m^{2} l_{1}^{3} }} - c_{1} k\left[ {\frac{{(M + m)^{2} c_{1}^{2} g}}{{m_{1}^{3} m^{3} l_{1}^{6} }} + (M + m)g\frac{{km_{1} l_{1} + (M + m)m_{1} g}}{{m_{1}^{2} m^{3} l_{1}^{3} }}} \right] \\ & \quad - (M + m)^{2} c_{1} g^{2} \frac{{km_{1} l_{1} + (M + m)m_{1} g}}{{m_{1}^{2} m^{3} l_{1}^{4} }} + \frac{{2(M + m)^{2} c_{1} g^{2} k}}{{m_{1} m^{3} l_{1}^{3} }} \\ b_{4} & = (M + m)c_{1}^{2} k\frac{{km_{1} l_{1} + (M + m)m_{1} g}}{{m_{1}^{3} m^{3} l_{1}^{5} }} - \frac{{c_{1}^{2} k^{2} }}{{m_{1}^{2} m^{2} l_{1}^{4} }} - \frac{{(M + m)^{2} c_{1}^{2} gk}}{{m_{1}^{2} m^{3} l_{1}^{5} }}. \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cao, D. & Pan, K. Dry-friction-induced self-excitation of a rectangular liquid-filled tank. Nonlinear Dyn 102, 1337–1359 (2020). https://doi.org/10.1007/s11071-020-05971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05971-2

Keywords

Navigation