Skip to main content
Log in

Solution to the main problem of the artificial satellite by reverse normalization

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinearities of the dynamics of Earth artificial satellites are encapsulated by two formal integrals that are customarily computed by perturbation methods. Standard procedures begin with a Hamiltonian simplification that removes non-essential short-period terms from the Geopotential, and follow with the removal of both short- and long-period terms by means of two different canonical transformations that can be carried out in either order. We depart from the tradition and proceed by standard normalization to show that the Hamiltonian simplification part is dispensable. Decoupling first the motion of the orbital plane from the in-plane motion reveals as a feasible strategy to reach higher orders of the perturbation solution, which, besides, permits an efficient evaluation of the long series that comprise the analytical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The advantages of decoupling the motion of the instantaneous orbital plane from the in-plane motion are well known and are commonly pursued in the search for efficient numerical integration methods, q.v. [43] and references therein.

References

  1. Aksnes, K.: A note on ‘The main problem of satellite theory for small eccentricities, by A. Deprit and A. Rom, 1970’. Celest. Mech. 4(1), 119–121 (1971)

    MATH  Google Scholar 

  2. Alfriend, K.T., Coffey, S.L.: Elimination of the perigee in the satellite problem. Celest. Mech. 32(2), 163–172 (1984)

    MATH  Google Scholar 

  3. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics. 2nd ed., Springer, New York (1989)

  4. Breakwell, J.V., Vagners, J.: On error bounds and initialization in satellite orbit theories. Celest. Mech. 2, 253–264 (1970)

    MATH  Google Scholar 

  5. Broucke, R.A.: Numerical integration of periodic orbits in the main problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 58(2), 99–123 (1994)

    MathSciNet  Google Scholar 

  6. Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–397 (1959)

    MathSciNet  Google Scholar 

  7. Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    MATH  Google Scholar 

  8. Celletti, A., Negrini, P.: Non-integrability of the problem of motion around an oblate planet. Celest. Mech. Dyn. Astron. 61(3), 253–260 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Coffey, S.L., Deprit, A.: Third-order solution to the main problem in satellite theory. J. Guid. Control Dyn. 5(4), 366–371 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Coffey, S.L., Deprit, A., Miller, B.R.: The critical inclination in artificial satellite theory. Celest.l Mech. 39(4), 365–406 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Cook, R.A.: The long-term behavior of near-circular orbits in a zonal gravity field (AAS 91-463). In Kaufman, B., Alfriend, K.T., Roehrich, R.L., Dasenbrock, R.R. (eds) Astrodynamics 1991, volume 76 of Advances in the Astronautical Sciences, American Astronautical Society, Univelt, Inc, pp. 2205–2221 (1992)

  12. Danby, J.M.A.: Motion of a satellite of a very oblate planet. Astron. J. 73(10), 1031–1038 (1968)

    Google Scholar 

  13. Danby, J.M.A.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell, Richmond VA (1992)

    Google Scholar 

  14. Delaunay, C.E.: La Théorie du Mouvement de la Lune, Premier volume. Mémoires de l’Academie des Sciences de l’Institut Impérial de France, vol. 28. Mallet-Bachellier, Paris (1860)

  15. Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969)

    MathSciNet  MATH  Google Scholar 

  16. Deprit, A.: The elimination of the parallax in satellite theory. Celest. Mech. 24(2), 111–153 (1981)

    MathSciNet  MATH  Google Scholar 

  17. Deprit, A.: Delaunay normalisations. Celest. Mech. 26, 9–21 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Deprit, A., Miller, B.: Simplify or Perish. Celest. Mech. 45, 189–200 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Deprit, A., Rom, A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2(2), 166–206 (1970)

    MATH  Google Scholar 

  20. Frauenholz, R.B., Bhat, R.S., Shapiro, B.E., Leavitt, R.K.: Analysis of the TOPEX/poseidon operational orbit: observed variations and why. J Spacecr Rock 35, 212–224 (1998)

    Google Scholar 

  21. Gaias, G., Colombo, C., Lara, M.: Analytical framework for precise relative motion in low earth orbits. J. Guid. Control Dyn, 1–13, (2020)

  22. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Addison-Wesley, New York (2001)

    MATH  Google Scholar 

  23. Hansen, P.A.: Expansions of the product of a power of the radius vector with the sinus or cosinus of a multiple of the true anomaly in terms of series containing the sinuses or cosinuses of the multiples of the true, eccentric or mean anomaly. Abhandlungen der Koniglich Sachsischen Gesellschaft der Wissenschaften 2(3), 183–281 (1855). English translation by J.C. Van der Ha, ESA/ESOC, Darmstadt, Germany, 1977

    Google Scholar 

  24. Hautesserres, D., Lara, M.: Intermediary LEO propagation including higher order zonal harmonics. Celest. Mech. Dyn. Astron. 127, 505–526 (2017)

    MathSciNet  Google Scholar 

  25. Healy, L.M.: The Main Problem in Satellite Theory Revisited. Celest. Mech. Dyn. Astron. 76(2), 79–120 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Irigoyen, M., Simo, C.: Non integrability of theJ \(_{2}\) problem. Celest. Mech. Dyn. Astron. 55(3), 281–287 (1993)

    MATH  Google Scholar 

  27. Izsak, I.G.: A second-order solution of vinti’s dynamical problem. Smithsonian Contribut. Astrophys. 6, 81–107 (1963)

    MathSciNet  Google Scholar 

  28. Jefferys, W.H.: Automated, closed form integration of formulas in elliptic motion. Celest. Mech. 3, 390–394 (1971)

    Google Scholar 

  29. Jupp, A.H.: The critical inclination problem - 30 years of progress. Celest. Mech. 43(1–4), 127–138 (1988)

    MATH  Google Scholar 

  30. Kahan, W.: Lecture notes on the status of IEEE standard 754 for binary floating-point arithmetic. Technical report, Electrical Engineering and Computer Science, University of California, Berkeley, CA, October (1997)

  31. Kaula, W.M.: Analysis of gravitational and geometric aspects of geodetic utilization of satellites. Geophys. J 5, 104–133 (1961)

    MATH  Google Scholar 

  32. Kinoshita, H.: First-order perturbations of the two finite body problem. Publ. Astronom. Soc. Jpn. 24, 423–457 (1972)

    Google Scholar 

  33. Kinoshita, H.: Third-order solution of an artificial-satellite theory. SAO Special Report, 379, (1977)

  34. Konopliv, A.: A perturbation method and some applications. Celest. Mech. Dyn. Astron. 47, 305 (1990)

    MathSciNet  MATH  Google Scholar 

  35. Konopliv, A.S.: A third order of \(J_2\) solution with a transformed time. Interoffice Memorandum IOM 314.3 - 970, Jet Propulsion Laboratory, 4800 Oak Grove Dr, Pasadena, CA 91109, USA, March (1991)

  36. Kozai, Y.: The motion of a close earth satellite. Astronom. J. 64, 367–377 (1959)

    MathSciNet  Google Scholar 

  37. Kozai, Y.: Second-order solution of artificial satellite theory without air drag. Astronom. J. 67, 446–461 (1962)

    MathSciNet  Google Scholar 

  38. Lara, M.: SADSaM: A software assistant for designing satellite missions. Technical Report DTS/MPI/MS/MN/99-053, Centre National d’Études Spatiales, 18, avenue Edouard Belin - 31401 Toulouse Cedex 9, France, May (1999)

  39. Lara, M.: Searching for repeating ground track orbits: a systematic approach. J Astronaut. Sci. 47(3–4), 177–188 (1999)

    Google Scholar 

  40. Lara, M.: Simplified equations for computing science orbits around planetary satellites. J. Guid. Control Dyn. 31(1), 172–181 (2008)

    Google Scholar 

  41. Lara, M.: On inclination resonances in artificial satellite theory. Acta Astronaut. 110, 239–246 (2015). Dynamics and Control of Space Systems

    Google Scholar 

  42. Lara, M.: Analytical and semianalytical propagation of space orbits: the role of polar-nodal variables. In Gómez, G., Josep M.J. (eds) Astrodynamics Network AstroNet-II: The Final Conference, volume 44 of Astrophysics and Space Science Proceedings, pp. 151–166. Springer, Cham (2016)

  43. Lara, M.: Note on the ideal frame formulation. Celest. Mech. Dyn. Astron. 129, 137–151 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Lara, M.: Nonlinear librations of distant retrograde orbits: a perturbative approach–the Hill problem case. Nonlinear Dyn. 93(4), 2019–2038 (2018)

    Google Scholar 

  45. Lara, M.: A new radial, natural, higher-order intermediary of the main problem four decades after the elimination of the parallax. Celest. Mech. Dyn. Astron. 131(9), 20 (2019)

    MathSciNet  Google Scholar 

  46. Lara, M., Ferrer, S.: Closed form perturbation solution of a fast rotating triaxial satellite under gravity-gradient torque. Cosm. Res. 51(4), 289–303 (2013)

    Google Scholar 

  47. Lara, M., Ferrer, S.: Expanding the simple pendulum’s rotation solution in action-angle variables. Eur. J. Phys. 36(5), 055040 (2015). Expanded version: arXiv eprint nlin.SI 1503.03358

    MATH  Google Scholar 

  48. Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Delaunay variables approach to the elimination of the perigee in Artificial Satellite Theory. Celest. Mech. Dyn. Astron. 120(1), 39–56 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Proper averaging via parallax elimination (AAS 13-722). In: Broschart, S.B., Turner, J.D., Howell, K.C., Hoots, F.R. (eds.) Astrodynamics 2013, volume 150 of Advances in the Astronautical Sciences, pages 315–331, P.O. Box 28130, San Diego, California 92198, USA, January. American Astronautical Society, Univelt, Inc (2014)

  50. Lara, M., San-Juan, J.F., Hautesserres, D.: Semi-analytical propagator of high eccentricity orbits. Technical Report R-S15/BS-0005-024, Centre National d’Études Spatiales, 18, avenue Edouard Belin - 31401 Toulouse Cedex 9, France, January (2016)

  51. Lara, M., Vilhena de Moraes, R., Sanchez, D.M., Prado, A.F.B.A.: Efficient computation of short-period analytical corrections due to third-body effects (AAS 15-295). In: Furfaro, R., Casotto, S., Trask, A., Zimmer, S. (eds) AAS/AIAA Spaceflight Mechanics Meeting 2015, volume 155 of Advances in the Astronautical Sciences, USA, 2015. American Astronautical Society, Univelt, Inc, pp. 437–455 (2015)

  52. Lyddane, R.H.: Small eccentricities or inclinations in the Brouwer theory of the artificial satellite. Astron. J. 68(8), 555–558 (1963)

    MathSciNet  Google Scholar 

  53. Metris, G.: Mean values of particular functions in the elliptic motion. Celest. Mech. Dyn. Astron. 52, 79–84 (1991)

    MathSciNet  MATH  Google Scholar 

  54. Nayfeh, A.H.: Perturbation Methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

    Google Scholar 

  55. Osácar, C., Palacián, J.F.: Decomposition of functions for elliptical orbits. Celest. Mech. Dyn. Astron. 60(2), 207–223 (1994)

    MATH  Google Scholar 

  56. Persson, S., Jacobsson, B., Gill, E.: PRISMA–Demonstration Mission for Advanced Rendezvous and Formation Flying Technologies and Sensors (paper IAC-05-B56B07). In: Proceedings of the 56th International Astronautical Congress (IAC), October 17–21 2005, Fukuoka, Japan, pages 1–10. International Astronautical Federation (IAF), International Astronautical Federation (IAF), October (2005)

  57. Sabol, C., Draim, J., Cefola, P.J.: Refinement of a sun-synchronous, critically inclined orbit for the \(\text{ ELLIPSO}^{{\rm TM}}\) personal communication system. J. Astronaut. Sci. 44, 467–489 (1996)

    Google Scholar 

  58. San-Juan, J.F., Ortigosa, D., López-Ochoa, L.M., López, R.: Deprit’s elimination of the parallax revisited. J. Astronaut. Sci. 60, 137–148 (2013)

    Google Scholar 

  59. Tisserand, F.: Traité de mécanique céleste. Tome I: Perturbations des planètes d’aprés la méthode de la variation des constantes arbitraries. Gauthier-Villars et fils, Quai des Grands-Augustins, 55, Paris (1889)

Download references

Acknowledgements

Support by the Spanish State Research Agency and the European Regional Development Fund under Projects ESP2016 -76585-R and ESP2017-87271-P (MINECO/ AEI/ERDF, EU) is recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lara.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Tables of inclination polynomials

Appendix: Tables of inclination polynomials

Inclination polynomials needed in the evaluation of the analytical perturbation solution up to the third order of \(J_2\) are summarized in this appendix.

Table 2 Inclination polynomials \(\gamma _{2,j,k}\) in Eq. (21)
Table 3 Nonzero inclination polynomials \(\varGamma _{2,j,k,l}\) in Eqs. (22)–(23)
Table 4 Inclination polynomials \(\gamma _{3,j,k}\) in Eq. (24)
Table 5 Inclination polynomials \(\varLambda _{2,j,k}\) in Eq. (33)
Table 6 Nonzero inclination polynomials \(\varGamma _{3,j,k,l}\) in Eq. (25)
Table 7 Inclination polynomials \(\lambda _{3,j}\) in Eq. (34)
Table 8 Nonzero coefficients \(\varPhi _{3,j,k}\) in Eq. (35). \(\varPhi _{3,1,0}=\frac{15}{2}\varPhi _{3,0,3}\), \(\varPhi _{3,1,2}=-\frac{3}{2}\varPhi _{3,0,3}\), \(\varPhi _{3,2,0}=3\varPhi _{3,0,3}\), and \(\varPhi _{3,3,0}=\frac{1}{2}\varPhi _{3,0,3}\)
Table 9 Nonzero inclination polynomials \(\varLambda _{3,j,k}\) in Eq. (35)
Table 10 Inclination polynomials \(\varPsi _{i,j}\) in Eq. (45)
Table 11 Inclination polynomials \(\omega _{i,j}\) in Eq. (46)
Table 12 Inclination polynomials \(\varOmega _{i,j}\) in Eq. (47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, M. Solution to the main problem of the artificial satellite by reverse normalization. Nonlinear Dyn 101, 1501–1524 (2020). https://doi.org/10.1007/s11071-020-05857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05857-3

Keywords

Navigation