Skip to main content
Log in

Nonlinear dynamics of loaded visco-hyperelastic spherical shells

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear dynamic behaviors, especially, limit cycles and chaos, are investigated for the spherical shell composed of a class of visco-hyperelastic materials subjected to uniform radial loads at its inner and outer surfaces. To include the thickness effect, a more general model compared with the membrane and thin plate is proposed to investigate the dynamic characteristics of the visco-hyperelastic structure. Then, the coupled integro-differential equations describing the radially symmetric motion of the spherical shell are derived in terms of the variational principle and the finite viscoelasticity theory. Due to both the geometrical and physical nonlinearities, there exists an asymmetric homoclinic orbit for the hyperelastic structure. Particularly, under constant loads, the system converges to a stable equilibrium point, and the convergence position and speed are closely related to both the initial condition and the viscosity because of the existence of different basins, while under periodic loads, some complex phenomena, such as the limit cycles and chaos, are found, and the chaotic phenomena are analyzed by the bifurcation diagram and Lyapunov exponent. Moreover, by numerical analyses, parametric studies are carried out to illustrate the effects of viscosity, load amplitude, external frequency and initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Tamadapu, G., DasGupta, A.: Finite inflation analysis of a hyperelastic toroidal membrane of initially circular cross-section. Int. J. Nonlinear Mech. 49, 31–39 (2013)

    Google Scholar 

  2. Zehil, G.P., Gavin, H.P.: Unified constitutive modeling of rubber-like materials under diverse loading conditions. Int. J. Eng. Sci. 62, 90–105 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35(26–27), 3455–3482 (1998)

    MATH  Google Scholar 

  4. Bergström, J.S., Boyce, M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998)

    MATH  Google Scholar 

  5. Sheng, J.J., Chen, H.L., Liu, L., Zhang, J.S., Wang, Y.Q., Jia, S.H.: Dynamic electromechanical performance of viscoelastic dielectric elastomers. J. Appl. Phys. 114(13), 134101 (2013)

    Google Scholar 

  6. Gu, G.Y., Zhu, J., Zhu, L.M., Zhu, X.Y.: A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 12(1), 011003 (2017)

    Google Scholar 

  7. Haslach, H.W., Humphrey, J.D.: Dynamics of biological soft tissue and rubber: internally pressurized spherical membranes surrounded by a fluid. Int. J. Nonlinear Mech. 39(3), 399–420 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Mihai, L.A., Fitt, D., Woolley, T.E., Goriely, A.: Likely equilibria of stochastic hyperelastic spherical shells and tubes. Math. Mech. Solids 24(7), 2066–2082 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Yan, Q.Y., Ding, H., Chen, L.Q.: Periodic responses and chaotic behaviors of an axially accelerating viscoelastic Timoshenko beam. Nonlinear Dyn. 78(2), 1577–1591 (2014)

    MathSciNet  Google Scholar 

  10. Asnafi, A.: Dynamic stability recognition of cylindrical shallow shells in Kelvin-Voigt viscoelastic medium under transverse white noise excitation. Nonlinear Dyn. 90(3), 2125–2135 (2017)

    MathSciNet  Google Scholar 

  11. Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Peng, Z.K.: Theoretical study of the effects of nonlinear viscous damping on vibration isolation of sdof systems. J. Sound Vib. 323(1), 352–365 (2009)

    Google Scholar 

  12. Laalej, H., Lang, Z.Q., Daley, S., Zazas, I., Billings, S., Tomlinson, G.: Application of non-linear damping to vibration isolation: an experimental study. Nonlinear Dyn. 69(1–2), 409–421 (2012)

    Google Scholar 

  13. Ding, H., Zhu, M.H., Chen, L.Q.: Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dyn. 92(2), 325–349 (2018)

    Google Scholar 

  14. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vibr. 314(3), 371–452 (2008)

    Google Scholar 

  15. Chen, L.Q., Yang, X.D.: Vibration and stability of an axially moving viscoelastic beam with hybrid supports. Eur. J. Mech. A. Solids 25(6), 996–1008 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Yao, M.H., Zhang, W., Zu, J.W.: Multi-pulse chaotic dynamics in non-planar motion of parametrically excited viscoelastic moving belt. J. Sound Vib. 331(11), 2624–2653 (2012)

    Google Scholar 

  17. Farokhi, H., Ghayesh, M.H.: Viscoelasticity effects on resonant response of a shear deformable extensible microbeam. Nonlinear Dyn. 87(1), 391–406 (2017)

    MATH  Google Scholar 

  18. Sun, X.J., Zhang, H., Meng, W.J., Zhang, R.H., Li, K.N., Peng, T.: Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers. Nonlinear Dyn. 94(2), 1243–1265 (2018)

    Google Scholar 

  19. Knowles, J.K.: Large amplitude oscillations of a tube of incompressible elastic material. Q. Appl. Math. 18(1), 71–77 (1960)

    MathSciNet  MATH  Google Scholar 

  20. Guo, Z.H., Solecki, R.: Free and forced finite-amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material. Arch. Mech. 15(3), 427–433 (1963)

    MathSciNet  MATH  Google Scholar 

  21. Calderer, C.: The dynamical behavior of nonlinear elastic spherical shells. J. Elast. 13(1), 17–47 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Beatty, M.F.: On the radial oscillations of incompressible, isotropic, elastic and limited elastic thick-walled tubes. Int. J. Nonlinear Mech. 42(2), 283–297 (2007)

    Google Scholar 

  23. Aranda-Iglesias, D., Rodríguez-Martínez, J.A., Rubin, M.B.: Nonlinear axisymmetric vibrations of a hyperelastic orthotropic cylinder. Int. J. Nonlinear Mech. 99, 131–143 (2018)

    Google Scholar 

  24. Rodríguez-Martínez, J.A., Fernández-Sáez, J., Zaera, R.: The role of constitutive relation in the stability of hyper-elastic spherical membranes subjected to dynamic inflation. Int. J. Eng. Sci. 93, 31–45 (2015)

    Google Scholar 

  25. Dai, H.L., Wang, L.: Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching. Nonlinear Dyn. 82(4), 1709–1719 (2015)

    Google Scholar 

  26. Ren, J.S.: Dynamics and destruction of internally pressurized incompressible hyper-elastic spherical shells. Int. J. Eng. Sci. 47(7–8), 745–753 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Aranda-Iglesias, D., Ramón-Lozano, C., Rodríguez-Martínez, J.: Nonlinear resonances of an idealized saccular aneurysm. Int. J. Eng. Sci. 121, 154–166 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Zhao, Z.T., Zhang, W.Z., Zhang, H.W., Yuan, X.G.: Some interesting nonlinear dynamic behaviors of hyperelastic spherical membranes subjected to dynamic loads. Acta Mech. 230(8), 3003–3018 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Nonlinear Mech. 58, 233–257 (2014)

    Google Scholar 

  30. Wang, R., Zhang, W.Z., Zhao, Z.T., Zhang, H.W., Yuan, X.G.: Radially and axially symmetric motions of a class of transversely isotropic compressible hyperelastic cylindrical tubes. Nonlinear Dyn. 90(4), 2481–2494 (2017)

    Google Scholar 

  31. Xu, J., Yuan, X.G., Zhang, H.W., Zhao, Z.T., Zhao, W.: Combined effects of axial load and temperature on finite deformation of incompressible thermo-hyperelastic cylinder. Appl. Math. Mech. Engl. Ed. 40(4), 499–514 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Xu, J., Yuan, X.G., Zhang, W.Z., Niu, D.T.: Strongly nonlinear vibrations of a hyperelastic thin-walled cylindrical shell based on the modified lindstedt-poincare method. Int. J. Struct. Stab. Dyn. (2019). https://doi.org/10.1142/s0219455419501608

    Article  MathSciNet  Google Scholar 

  33. Miehe, C., Keck, J.: Superimposed finite elastic–viscoelastic–plastoelastic stress response with damage in filled rubbery polymers: experiments, modelling and algorithmic implementation. J. Mech. Phys. Solids 48(2), 323–365 (2000)

    MATH  Google Scholar 

  34. Li, Y.L., Oh, I., Chen, J.H., Zhang, H.H., Hu, Y.H.: Nonlinear dynamic analysis and active control of visco-hyperelastic dielectric elastomer membrane. Int. J. Solids Struct. 152, 28–38 (2018)

    Google Scholar 

  35. Li, T.F., Qu, S.X., Yang, W.: Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. Int. J. Solids Struct. 49(26), 3754–3761 (2012)

    Google Scholar 

  36. Zhang, J.S., Tang, L.L., Li, B., Wang, Y.J., Chen, H.L.: Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. J. Appl. Phys. 117(8), 084902 (2015)

    Google Scholar 

  37. Chiang Foo, C., Cai, S., Jin Adrian Koh, S., Bauer, S., Suo, Z.: Model of dissipative dielectric elastomers. J. Appl. Phys. 111(3), 034102 (2012)

    Google Scholar 

  38. Lakes, R.: Viscoelastic Materials. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  39. Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12(2), 93–99 (1985)

    Google Scholar 

  40. Gent, A.: A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996)

    MathSciNet  Google Scholar 

  41. Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32(1), 1–18 (2000)

    MATH  Google Scholar 

  42. Liu, M., Fatt, M.S.H.: A constitutive equation for filled rubber under cyclic loading. Int. J. Nonlinear Mech. 46(2), 446–456 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11672069, 11672062, 11872145), and the Programme of Introducing Talents of Discipline to Universities Project (No. B08014). In addition, we must express our thanks to the editor and reviewers, whose suggestions have greatly increased the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegang Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The graphics program used in the paper “Nonlinear dynamics of loaded visco-hyperelastic spherical shells” is Mathematic V11.3.

Appendix

Appendix

In the viscoelastic model (Fig. 1), the strain energy functions of the two hyperelastic springs are

$$ W_{\alpha } = \hat{W}\left( {{\mathbf{B}}_{\alpha } } \right) = - \frac{{\mu^{\alpha } J_{m}^{\alpha } }}{2}\log \left( {1 - \frac{{I_{1}^{\alpha } - 3}}{{J_{m}^{\alpha } }}} \right),\;W_{\beta } = \hat{W}\left( {{\mathbf{B}}_{\beta } } \right) = - \frac{{\mu^{\beta } J_{m}^{\beta } }}{2}\log \left( {1 - \frac{{I_{1}^{\beta } - 3}}{{J_{m}^{\beta } }}} \right) $$
(A1)

where \( {\mathbf{B}}_{\alpha } = {\mathbf{F}}_{\alpha } \cdot {\mathbf{F}}_{\alpha }^{T} \) and \( {\mathbf{B}}_{\beta } = {\mathbf{F}}_{\beta } \cdot {\mathbf{F}}_{\beta }^{T} \) are the left Cauchy–Green deformation tensors, \( I_{1}^{\alpha } \) and \( I_{1}^{\beta } \) are the first invariants. \( {\varvec{\upsigma}}_{\alpha } \), \( {\varvec{\upsigma}}_{\beta } \) and \( {\varvec{\upsigma}}_{\gamma } \) are Cauchy stress tensors in the viscoelastic model, and the following relation is satisfied for the Maxwell model

$$ {\varvec{\upsigma}}_{\beta } = {\varvec{\upsigma}}_{\gamma } $$
(A2)

Additionally, the total stress is given by

$$ {\varvec{\upsigma}} = {\varvec{\upsigma}}_{\alpha } + {\varvec{\upsigma}}_{\beta } $$
(A3)

and the multiplication decomposition of the deformation gradient tensor is that

$$ {\mathbf{F}} = {\mathbf{F}}_{\alpha } = {\mathbf{F}}_{\beta } \cdot {\mathbf{F}}_{\gamma } $$
(A4)

In the finite element implement, the following form of the strain energy function is considered to deal with the incompressibility

$$ W = \hat{W}\left( {I_{1} ,J} \right) = \hat{W}_{D} \left( {\bar{I}_{1} } \right) + \hat{W}_{V} \left( J \right) = \mu W_{0} \left( {\bar{I}_{1} } \right) + K\left( {\frac{{J^{2} - 1}}{2} - \ln J} \right) $$
(A5)

where \( \mu \) and \( K \) are material parameters, \( J = \det \left( {\mathbf{F}} \right) \), \( \bar{I}_{1} = J^{ - 2/3} I_{1} \) and

$$ W_{0} \left( {\bar{I}_{1} } \right) = - \frac{{J_{m} }}{2}\ln \left( {1 - \frac{{\bar{I}_{1} - 3}}{{J_{m} }}} \right) $$
(A6)

The Cauchy stress tensors of springs \( \alpha \) and \( \beta \) are

$$ {\varvec{\upsigma}}_{\alpha } = \frac{2}{J}\frac{{\partial W_{\alpha } }}{{\partial {\mathbf{B}}}} \cdot {\mathbf{B}},\;{\varvec{\upsigma}}_{\beta } = \frac{2}{J}\left[ {\frac{{\partial W_{\beta } }}{{\partial {\mathbf{B}}_{\beta } }} \cdot {\mathbf{B}}_{\beta } } \right]_{EQ} $$
(A7)

The material Jacobian could be evaluated as follows

$$ {\mathbf{c}} = {\mathbf{c}}_{\alpha } + {\mathbf{c}}_{\beta } = \frac{4}{J}\frac{\partial }{{\partial {\mathbf{B}}}}\left( {\frac{{\partial W_{\alpha } }}{{\partial {\mathbf{B}}}} \cdot {\mathbf{B}}} \right) \cdot {\mathbf{B}} + \frac{4}{J}\left[ {\frac{\partial }{{\partial {\mathbf{B}}_{\beta } }}\left( {\frac{{\partial W_{\beta } }}{{\partial {\mathbf{B}}_{\beta } }} \cdot {\mathbf{B}}_{\beta } } \right) \cdot {\mathbf{B}}_{\beta } } \right]_{EQ} $$
(A8)

where the subscript ‘EQ’ means that the stress of spring \( \beta \) depends on the solution of the following evolution equation

$$ {\dot{\mathbf{B}}}_{\beta } = {\mathbf{LB}}_{\beta } + {\mathbf{B}}_{\beta } {\mathbf{L}}^{T} - {\mathbf{M}}:2{\varvec{\upsigma}}_{\beta } \cdot {\mathbf{B}}_{\beta } $$
(A9)

where

$$ {\mathbf{M}} = \frac{1}{{2\eta_{D} }}\left( {{\mathbf{1}}^{4} - \frac{1}{3}{\mathbf{1}} \otimes {\mathbf{1}}} \right) + \frac{1}{{9\eta_{V} }}{\mathbf{1}} \otimes {\mathbf{1}} $$
(A10)

is the mobility tensor. The main objective of the evolution equation is to determine the variable of the Maxwell model in order that the stress may be evaluated when the material motion is known. The main feature of the algorithm for the integration is to carry out an operator split of \( {\dot{\mathbf{ B}}}_{\beta} \) into an elastic predictor \( E \) and an inelastic corrector \( I \), i.e.,

$$ {\dot{\mathbf{B}}}_{\beta } = \underbrace {{{\mathbf{LB}}_{\beta } + {\mathbf{B}}_{\beta } {\mathbf{L}}^{T} }}_{E} + \underbrace {{{\mathbf{F}}\mathop {{\mathbf{C}}_{\gamma }^{ - 1} }\limits^{.} {\mathbf{F}}^{T} }}_{I} $$
(A11)

In the elastic predictor step, let \( \mathop {{\mathbf{C}}_{\gamma }^{ - 1} }\limits^{.} = 0 \), then

$$ \left( {C_{i}^{ - 1} } \right)_{\text{trial}} = \left( {C_{i}^{ - 1} } \right)_{{t = t_{n - 1} }} $$
(A12)
$$ ({\mathbf{B}}_{\beta } )_{\text{trial}} = {\mathbf{F}}_{{t = t_{n} }} \cdot ({\mathbf{C}}_{\gamma }^{ - 1} )_{{t = t_{n - 1} }} \cdot {\mathbf{F}}_{{t = t_{n} }}^{T} $$
(A13)

In the inelastic corrector step, let \( {\mathbf{L}} = 0 \), then

$$ {\dot{\mathbf{B}}}_{\beta } = - \left( {2{\mathbf{M}}:{\varvec{\upsigma}}_{\beta } } \right) \cdot {\mathbf{B}}_{\beta } $$
(A14)

Solving the differential equation by the exponential mapping and taking the first-order accurate yield

$$ \varepsilon_{A\beta } = - \Delta t\left( {\frac{1}{{2\eta_{D} }}{\text{dev}}[{\varvec{\upsigma}}_{A} ] + \frac{1}{{9\eta_{V} }}{\varvec{\upsigma}}_{\beta } :{\mathbf{1}}} \right) + (\varepsilon_{A\beta } )_{\text{trial}} ,$$
(A15)

where \( {\text{dev}}[{\varvec{\upsigma}}_{A} ] \) (A = 1, 2, 3) are the principal values of the deviatoric stress of \( {\varvec{\upsigma}}_{\beta } \), \( \varepsilon_{A\beta } = \ln \lambda_{A\beta } \) are the elastic logarithmic principal stretches. Additionally, Eq. (A15) can be used to determine the principal values of \( {\mathbf{B}}_{\beta } \), and it can be solved by a local Newton iteration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Niu, D., Zhang, H. et al. Nonlinear dynamics of loaded visco-hyperelastic spherical shells. Nonlinear Dyn 101, 911–933 (2020). https://doi.org/10.1007/s11071-020-05855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05855-5

Keywords

Navigation