Skip to main content
Log in

Sliding Shilnikov connection in Filippov-type predator–prey model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recently, a piecewise smooth differential system was derived as a model of a 1 predator–2 prey interaction where the predator feeds adaptively on its preferred prey and an alternative prey. In such a model, strong evidence of chaotic behavior was numerically found. Here, we revisit this model and prove the existence of a Shilnikov sliding connection when the parameters are taken in a codimension one submanifold of the parameter space. As a consequence of this connection, we conclude, analytically, that the model behaves chaotically for an open region of the parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abrams, P.A., Matsuda, H.: Population dynamical consequences of reduced predator switching at low total prey densities. Popul. Ecol. 45(3), 175–185 (2003)

    Article  Google Scholar 

  2. Allen, J.A., Greenwood, J.J.D., Clarke, B.C., Partridge, L., Robertson, A., Clarke, B.C.: Frequency-dependent selection by predators. Philos. Trans. R. Soc. Lond. B Biol. Sci. 319(1196), 485–503 (1988)

    Article  Google Scholar 

  3. Bäuerle, E., Gaedke, U.: Lake Constance—Characterization of an Ecosystem in Transition. Schweizerbart Science Publishers, Stuttgart (1999)

    Google Scholar 

  4. Boukal, D.S., Křivan, V.: Lyapunov functions for Lotka–Volterra predator–prey models with optimal foraging behavior. J. Math. Biol. 39(6), 493–517 (1999). https://doi.org/10.1007/s002850050009

    Article  MathSciNet  MATH  Google Scholar 

  5. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Communications and Control Engineering Series, 2nd edn. Springer, London (1999)

    Book  Google Scholar 

  6. Colombo, R.M., Křivan, V.: Selective strategies in food webs. IMA J. Math. Appl. Med. Biol. 10, 281–291 (1993)

    Article  Google Scholar 

  7. Cristiano, R., Carvalho, T., Tonon, D.J., Pagano, D.J.: Hopf and homoclinic bifurcations on the sliding vector field of switching systems in \(\mathbb{R}^3\): a case study in power electronics. Physica D 347, 12–20 (2017)

    Article  MathSciNet  Google Scholar 

  8. di Bernardo, M., Johansson, K.H., Vasca, F.: Self-oscillations and sliding in relay feedback systems: aymmetry and bifurcations. Int. J. Bifurc. Chaos 11(04), 1121–1140 (2001)

    Article  Google Scholar 

  9. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. The Benjamin/Cummings Publishing Co. Inc, Menlo Park (1986)

    MATH  Google Scholar 

  10. Dixon, D.D.: Piecewise deterministic dynamics from the application of noise to singular equations of motion. J. Phys. A: Math. Gen. 28(19), 5539–5551 (1995)

    Article  MathSciNet  Google Scholar 

  11. Dumortier, F., Llibre, J., Artés, J.: Qualitative Theory of Planar Differential Systems. Universitext. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  12. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathematics and its Applications, vol. 18, 1st edn. Springer, Berlin (1988)

    Book  Google Scholar 

  13. Fretwell, S.D.: Populations in a Seasonal Environment. (MPB-5) (Monographs in Population Biology). Princeton University Press, Princeton (1972)

    Google Scholar 

  14. Fretwell, S.D., Lucas, H.L.: On territorial behavior and other factors influencing habitat distribution in birds. Acta. Biotheor. 19(1), 16–36 (1969). https://doi.org/10.1007/bf01601953

    Article  Google Scholar 

  15. Gendron, R.P.: Models and mechanisms of frequency-dependent predation. Am. Nat. 130(4), 603–623 (1987)

    Article  Google Scholar 

  16. Greenwood, J.J.D., Elton, R.A.: Analysing experiments on frequency-dependent selection by predators. J. Anim. Ecol. 48(3), 721–737 (1979)

    Article  Google Scholar 

  17. Gupta, K., Gakkhar, S.: The Filippov approach for predator-prey system involving mixed type of functional responses. Differ. Equ. Dyn. Syst (2016). https://doi.org/10.1007/s12591-016-0322

    Article  Google Scholar 

  18. Hastings, A., Hom, C.L., Ellner, S., Turchin, P., Godfray, H.C.J.: Chaos in ecology: is mother nature a strange attractor? Annu. Rev. Ecol. Syst. 24(1), 1–33 (1993)

    Article  Google Scholar 

  19. Holt, R.D.: Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12(2), 197–229 (1977). https://doi.org/10.1016/0040-5809(77)90042-9

    Article  MathSciNet  Google Scholar 

  20. Jacquemard, A., Tonon, D.J.: Coupled systems of non-smooth differential equations. Bulletin des Sciences Mathématiques 136(3), 239–255 (2012)

    Article  MathSciNet  Google Scholar 

  21. Kneitel, J.M., Chase, J.M.: Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol. Lett. 7(1), 69–80 (2004)

    Article  Google Scholar 

  22. Kousaka, T., Kido, T., Ueta, T., Kawakami, H., Abe, M.: Analysis of border-collision bifurcation in a simple circuit. In: 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353), vol. 2, pp. 481–484 (2000)

  23. Krivan, V.: Optimal foraging and predator–prey dynamics. Theor. Popul. Biol. 49(3), 265–290 (1996)

    Article  Google Scholar 

  24. Krivan, V.: Dynamic ideal free distribution: effects of optimal patch choice on predator–prey dynamics. Am. Nat. 149(1), 164–178 (1997)

    Article  Google Scholar 

  25. Křivan, V.: The ideal free distribution and bacterial growth on two substrates. Theor. Popul. Biol. 69(2), 181–191 (2006). https://doi.org/10.1016/j.tpb.2005.07.006

    Article  MATH  Google Scholar 

  26. Křivan, V., Cressman, R., Schneider, C.: The ideal free distribution: a review and synthesis of the game-theoretic perspective. Theor. Popul. Biol. 73(3), 403–425 (2008). https://doi.org/10.1016/j.tpb.2007.12.009

    Article  MATH  Google Scholar 

  27. Křivan, V., Eisner, J.: The effect of the holling type II functional response on apparent competition. Theor. Popul. Biol. 70(4), 421–430 (2006). https://doi.org/10.1016/j.tpb.2006.07.004

    Article  MATH  Google Scholar 

  28. Leine, R., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, vol. 18, first edn. Springer, Berlin (2004)

    Book  Google Scholar 

  29. Meiss, J.D.: Differential Dynamical Systems, Mathematical Modeling and Computation, vol. 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2007). https://doi.org/10.1137/1.9780898718232

  30. Murdoch, W.W.: Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39(4), 335–354 (1969)

    Article  Google Scholar 

  31. Novaes, D.D., Ponce, G., Varão, R.: Chaos induced by sliding phenomena in Filippov systems. J. Dyn. Differ. Equ. 29(4), 1569–1583 (2017)

    Article  MathSciNet  Google Scholar 

  32. Novaes, D.D., Teixeira, M.A.: Shilnikov problem in Filippov dynamical systems. Chaos: Interdiscip. J. Nonlinear Sci. 29(6), 063110 (2019)

    Article  MathSciNet  Google Scholar 

  33. Piltz, S.H., Porter, M.A., Maini, P.K.: Prey switching with a linear preference trade-off. SIAM J. Appl. Dyn. Syst. 13(2), 658–682 (2014)

    Article  MathSciNet  Google Scholar 

  34. Rodrigues, D., Mancera, P., Carvalho, T., Gonçalves, L.: Sliding mode control in a mathematical model to chemoimmunotherapy: the occurrence of typical singularities. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2019.124782

    Article  Google Scholar 

  35. Rossa, F.D., Dercole, F.: Generic and generalized boundary operating points in piecewise-linear (discontinuous) control systems. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 7714–7719 (2012)

  36. Shilnikov, L.P.: A case of the existence of a denumerable set of periodic motions. Dokl. Akad. Nauk SSSR 160, 558–561 (1965)

    MathSciNet  Google Scholar 

  37. Shilnikov, L.P.: The generation of a periodic motion from a trajectory which is doubly asymptotic to a saddle type equilibrium state. Mat. Sb. (N.S.) 77(119), 461–472 (1968)

    MathSciNet  Google Scholar 

  38. Smith, J.M.: On Evolution. Edinburgh University Press, Edinburgh (1972)

    Google Scholar 

  39. Stephens, D.W., Krebs, J.R.: Foraging Theory. Monographs in Behavior and Ecology. Princeton University Press, Princeton (1987)

    Google Scholar 

  40. Teixeira, M.A.: Perturbation theory for non-smooth systems. In: Meyers, R. (ed.) Mathematics of Complexity and Dynamical Systems, vol. 1-3, pp. 1325–1336. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1806-1_83

    Chapter  Google Scholar 

  41. Tirok, K., Gaedke, U.: Regulation of planktonic ciliate dynamics and functional composition during spring in lake constance. Aquat. Microb. Ecol. 49(1), 87–100 (2007)

    Article  Google Scholar 

  42. Tirok, K., Gaedke, U.: Internally driven alternation of functional traits in a multispecies predator–prey system. Ecology 91(6), 1748–1762 (2010)

    Article  Google Scholar 

  43. Tresser, C.: Un théorème de shilnikov en \(C^{1,\,1}\). Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique 296(13), 545–548 (1983)

    MathSciNet  MATH  Google Scholar 

  44. van Leeuwen, E., Brännström, Å., Jansen, V.A.A., Dieckmann, U., Rossberg, A.G.: A generalized functional response for predators that switch between multiple prey species. J. Theor. Biol. 328, 89–98 (2013)

    Article  MathSciNet  Google Scholar 

  45. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. In: Texts in Applied Mathematics, vol. 2. Springer, New York (1990). https://doi.org/10.1007/978-1-4757-4067-7

    Book  Google Scholar 

  46. Wolfram Research, Inc.: Mathematica, Version 12.1. https://www.wolfram.com/mathematica. Champaign, IL, 2020

  47. Zhang, X., Tang, S.: Existence of multiple sliding segments and bifurcation analysis of Filippov prey-predator model. Appl. Math. Comput. 239, 265–284 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Professor Sérgio Furtado dos Reis for meaningful discussion and constructive criticism on the manuscript. The authors also thank the referees for their comments and suggestions which helped us to improve the presentation of this paper. Finally, the authors thank Espaço da Escrita—Pró-Reitoria de Pesquisa—UNICAMP for the language services provided. Tiago Carvalho is supported by São Paulo Research Foundation (FAPESP Grants 2017/00883-0 and 2019/10450-0) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grant 304809/2017-9). Douglas Novaes is supported by São Paulo Research Foundation (FAPESP Grants 2018/16430-8, 2018/13481-0, and 2019/10269-3) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grants 306649/2018-7 and 438975/2018-9). Luiz F. Gonçalves is supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES), Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Fernando Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, T., Duarte Novaes, D. & Gonçalves, L.F. Sliding Shilnikov connection in Filippov-type predator–prey model. Nonlinear Dyn 100, 2973–2987 (2020). https://doi.org/10.1007/s11071-020-05672-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05672-w

Keywords

Navigation