Skip to main content
Log in

Robust identification for fault detection in the presence of non-Gaussian noises: application to hydraulic servo drives

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Intensive research in the field of mathematical modeling of hydraulic servo systems has shown that their mathematical models have many important details which cannot be included in the model. Due to impossibility of direct measurement or calculation of dimensions of certain components, leakage coefficients or friction coefficients, it was supposed that parameters of the hydraulic servo system are random. On the other side, it has been well known that the hydraulic servo system can be approximated by a linear model with time-varying parameters. An estimation of states and time-varying parameters of linear state-space models is of practical importance for fault diagnosis and fault-tolerant control. Previous works on this topic consider estimation in Gaussian noise environment, but not in the presence of outliers. The known fact is that the measurements have inconsistent observations with the largest part of the observation population (outliers). They can significantly make worse the properties of linearly recursive algorithms which are designed to work in the presence of Gaussian noises. This paper proposes the strategy of parameter–state robust estimation of linear state-space models in the presence of all possible faults and non-Gaussian noises. Because of its good features in robust filtering, Masreliez–Martin filter represents a cornerstone for realization of the robust algorithm. The good features of the proposed robust algorithm to identification of the hydraulic servo system are illustrated by intensive simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Filipovic, V., Nedic, N., Stojanovic, V.: Robust identification of pneumatic servo actuators in the real situations. Forschung im Ingenieurwesen—Eng. Res. 75(4), 183–196 (2011)

    Article  Google Scholar 

  2. Stojanovic, V., Nedic, N.: Identification of time-varying OE models in presence of non-Gaussian noise: application to pneumatic servo drives. Int. J. Robust Nonlinear Control 26(18), 3974–3995 (2016)

    Article  MathSciNet  Google Scholar 

  3. Kalman, R.E.: New approach to linear filtering and prediction problems. Trans. ASME – J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  4. Ding, B., Fang, H.: Fault estimation and prediction for nonlinear stochastic system with intermittent observations. Int. J. Robust Nonlinear Control (2017). https://doi.org/10.1002/rnc.3925

    Article  MATH  Google Scholar 

  5. Chang, Y.H., Hu, Q., Tomlin, C.J.: Secure estimation based Kalman filter for cyber–physical systems against sensor attacks. Automatica 95, 399–412 (2018)

    Article  MathSciNet  Google Scholar 

  6. Chang, L., Zha, F., Qin, F.: Indirect Kalman filtering based attitude estimation for low-cost attitude and heading reference systems. IEEE/ASME Trans. Mechatron. 22(4), 1850–1858 (2017)

    Article  Google Scholar 

  7. Liu, W.-Q., Wang, X.-M., Deng, Z.L.: Robust fusion time-varying Kalman estimators for multisensor networked systems with mixed uncertainties. Int. J. Robust Nonlinear Control (2018). https://doi.org/10.1002/rnc.4226

    Article  MathSciNet  MATH  Google Scholar 

  8. Nosrati, K., Shafiee, M.: Kalman filtering for discrete-time linear fractional-order singular systems. IET Control Theory Appl. 12(9), 1254–1266 (2018)

    Article  MathSciNet  Google Scholar 

  9. Khan, R., Williams, P., Riseborough, P., Rao, A., Hill, R.: Fault detection and identification—a filter investigation. Int. J. Robust Nonlinear Control (2017). https://doi.org/10.1002/rnc.3989

    Article  MATH  Google Scholar 

  10. Viegas, D., Batista, P., Oliveira, P., Silvestre, C.: Discrete-time distributed Kalman filter design for formations of autonomous vehicles. Control Eng. Pract. 75, 55–68 (2018)

    Article  Google Scholar 

  11. Walle, A., Naets, F., Desmet, W.: Virtual microphone sensing through vibro-acoustic modelling and Kalman filtering. Mech. Syst. Signal Process. 104, 120–133 (2018)

    Article  Google Scholar 

  12. Maes, K., Iliopoulos, A., Weijtjens, W., Devriendt, C., Lombaert, G.: Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms. Mech. Syst. Signal Process. 76–77, 592–611 (2016)

    Article  Google Scholar 

  13. Cavallo, A., De Maria, G., Natale, C., Pirozzi, S.: Slipping detection and avoidance based on Kalman filter. Mechatronics 24(5), 489–499 (2014)

    Article  Google Scholar 

  14. Rodriguez, M.T., Banks, S.P.: Linear, Time-Varying Approximations to Nonlinear Dynamical Systems. Springer, Berlin (2010)

    Book  Google Scholar 

  15. Cox, H.: On the estimation of state variables and parameters for noisy dynamic systems. IEEE Trans. Autom. Control 9(1), 5–12 (1964)

    Article  MathSciNet  Google Scholar 

  16. Ljung, L.: Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Autom. Control 24(1), 36–50 (1979)

    Article  MathSciNet  Google Scholar 

  17. Aksoy, S., Muhurcu, A., Kizmaz, H.: State and parameter estimation in induction motor using the extended Kalman filtering algorithm. In: Proceedings of the International Symposium Modern Electric Power Systems, 1–5, Wroclaw, Poland, September (2010)

  18. Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation. J. Power Sources 134(2), 277–292 (2004)

    Article  Google Scholar 

  19. Carrassi, A., Vannitsem, S.: State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics. Q. J. R. Meteorol. Soc. 137(655), 435–451 (2011)

    Article  Google Scholar 

  20. Isermann, R.: Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems. Springer, Berlin (2011)

    MATH  Google Scholar 

  21. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002). https://doi.org/10.1109/78.978374

    Article  Google Scholar 

  22. Chatzi, E.N., Smyth, A.W.: Nonlinear system identification: particle-based methods. In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, I.K. (eds.) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg (2014)

    Google Scholar 

  23. Nemeth, C., Fearnhead, P., Mihaylova, L.: Sequential Monte Carlo methods for state and parameter estimation in abruptly changing environments. IEEE Trans. Signal Process. 62(5), 1245–1255 (2014). https://doi.org/10.1109/tsp.2013.2296278

    Article  MathSciNet  MATH  Google Scholar 

  24. Olivier, A., Smyth, A.W.: Particle filtering and marginalization for parameter identification in structural systems. Struct. Control Health Monit (2017). https://doi.org/10.1002/stc.1874

    Article  Google Scholar 

  25. Stojanovic, V., Nedic, N.: Joint state and parameter robust estimation of stochastic nonlinear systems. Int. J. Robust Nonlinear Control 26, 3058–3074 (2016). https://doi.org/10.1002/rnc.3490

    Article  MathSciNet  MATH  Google Scholar 

  26. Aggarwal, C.: Outlier Analysis, 2nd edn. Springer, New York (2017)

    Book  Google Scholar 

  27. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley, New York (2009)

    Book  Google Scholar 

  28. Maronna, R.A., Martin, R.D., Yohai, V.J., Barrera, M.S.: Robust Statistics: Theory and Methods, 2nd edn. Wiley, New York (2019)

    MATH  Google Scholar 

  29. Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Springer, Berlin (1999)

    Book  Google Scholar 

  30. Stojanovic, V., Nedic, N.: Robust identification of OE model with constrained output using optimal input design. J. Frankl. Inst. 353(2), 576–593 (2016)

    Article  MathSciNet  Google Scholar 

  31. Masreliez, C.J., Martin, R.D.: Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Autom. Control 22(3), 361–371 (1977)

    Article  MathSciNet  Google Scholar 

  32. Blackburn, J.F., Reethof, G., Shearer, J.L.: Fluid Power Control. The MIT Press, Cambridge (1960)

    Google Scholar 

  33. M. Jelali, A. Kroll, “Hydraulic Servo-systems: Modelling, Identification and Control”, Springer, 2003

  34. Barnet, V., Lewis, T.: Outliers in Statistical Data, 3rd edn. Wiley, Blackwell, New York (1994)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to reviewers for their valuable and constructive comments to improve this paper. This research has been supported by the Serbian Ministry of Education, Science and Technological Development under Grant 451-03-68/2020-14/200108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Stojanovic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanovic, V., Prsic, D. Robust identification for fault detection in the presence of non-Gaussian noises: application to hydraulic servo drives. Nonlinear Dyn 100, 2299–2313 (2020). https://doi.org/10.1007/s11071-020-05616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05616-4

Keywords

Navigation