Skip to main content
Log in

The mixed interaction of localized, breather, exploding and solitary wave for the (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation with weak nonlinearity, dispersion and perturbation can denote the development of the long waves and the surface waves in fluid dynamics. In this paper, the KP equation is illustrated with the symbolic computation. The mixed interaction solutions of local wave, solitary wave, breather wave, exploding wave and periodic wave for the equation are derived by the Hirota method. The effects of dispersion, nonlinearity and other parameters on the interactions are investigated. The solitary wave can be amplified via introducing the local wave. Adjusting the parameters can make the transmission of localized and breather wave more stable. Moreover, a new exploding and periodic wave is observed. It is useful for enriching the dynamic patterns of the wave solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Wazwaz, A.M.: Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Commun. Nonlinear Sci. Numer. Simul. 17(2), 491–495 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685–1691 (2017)

    MathSciNet  Google Scholar 

  4. Wazwaz, A.M., El-Tantawy, S.A.: New (3+1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87(4), 2457–2461 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Adem, A.R., Mirzazadeh, M., Zhou, Q., Hosseini, K.: Multiple soliton solutions of the Sawada-Kotera equation with a nonvanishing boundary condition and the perturbed Korteweg de Vries equation by using the multiple exp-function scheme. Adv. Math. Phys. 2019, 3175213 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Ekici, M., Sonmezoglu, A., Adem, A.R., Zhou, Q., Luan, Z.T., Liu, S., Mirzazadeh, M., Liu, W.J.: Soliton solutions and conservation laws of a (3+1)-dimensional nonlinear evolution equation. Acta Phys. Pol. A 135(3), 539 (2019)

    Google Scholar 

  7. Muatjetjeja, B., Adem, A.R., Mbusi, S.O.: Traveling wave solutions and conservation laws of a generalized Kudryashov–Sinelshchikov equation. J. Appl. Anal. 25(2), 211–217 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Wazwaz, A.M., El-Tantawy, S.A.: A new(3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 84(2), 1107–1112 (2016)

    MathSciNet  Google Scholar 

  9. Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85(2), 731–737 (2016)

    MathSciNet  Google Scholar 

  10. Guan, X., Liu, W., Zhou, Q.: Biswas, A: Some lump solutions for a generalized (3+ 1)-dimensional Kadomtsev–Petviashvili equation. Appl. Math. Comput. 366, 124757 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Yan, Y., Liu, W.: Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects. Appl. Math. Lett. 98, 171–176 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Liu, W., Zhang, Y., Wazwaz, A.M., Zhou, Q.: Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber. Appl. Math. Comput. 361, 325–331 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Guan, X., Liu, W., Zhou, Q., Biswas, A.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98(2), 1491–1500 (2019)

    Google Scholar 

  14. Liu, S., Zhou, Q., Biswas, A., Liu, W.: Phase-shift controlling of three solitons in dispersion-decreasing fibers. Nonlinear Dyn. 98(1), 395–401 (2019)

    MATH  Google Scholar 

  15. Yu, W., Liu, W., Triki, H., Zhou, Q., Biswas, A.: Phase shift, oscillation and collision of the anti-dark solitons for the (3+ 1)-dimensional coupled nonlinear Schrödinger equation in an optical fiber communication system. Nonlinear Dyn. 97(2), 1253–1262 (2019)

    MATH  Google Scholar 

  16. Liu, W., Zheng, X., Wang, C., Li, S.: Fission and fusion collision of high-order lumps and solitons in a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 96(4), 2463–2473 (2019)

    Google Scholar 

  17. Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 371, 124972 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Hajiketabi, M., Casas, F.: Numerical integrators based on the Magnus expansion for nonlinear dynamical systems. Appl. Math. Comput. 369, 124844 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Yang, X.G., Zhang, J., Wang, S.: Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete Contin. Dyn. Syst. A 40(3), 1493 (2020)

    MATH  Google Scholar 

  20. Yemm, L.T., Bassom, A.P.: New complex-valued solutions of Painlevé IV: an application to the nonlinear Schrödinger equation. Appl. Math. Lett. 101, 106060 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Guo, J., He, C., Zhang, X.: Nonlinear edge-preserving diffusion with adaptive source for document images binarization. Appl. Math. Comput. 351, 8–22 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Ramírez, J., Romero, J.L., Muriel, C.: A new method to obtain either first-or second-order reductions for parametric polynomial ODEs. J. Comput. Appl. Math. 358, 146–162 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Artemyev, A.V., Vasiliev, A.A., Neishtadt, A.I.: Charged particle nonlinear resonance with localized electrostatic wave-packets. Commun. Nonlinear Sci. 72, 392–406 (2019)

    MathSciNet  Google Scholar 

  24. Cisneros-Ake, L.A., Carretero-González, R., Kevrekidis, P.G., Malomed, B.A.: Dynamics and stabilization of bright soliton stripes in the hyperbolic-dispersion nonlinear Schrödinger equation. Commun. Nonlinear Sci. 74, 268–281 (2019)

    MathSciNet  Google Scholar 

  25. Bugay, A.N., Khalyapin, V.A.: Analytic description of pulse frequency self-shift in nonlinear photonic crystal fibers. Commun. Nonlinear Sci. 75, 270–279 (2019)

    MathSciNet  Google Scholar 

  26. Płociniczak, Ł.: Derivation of the nonlocal pressure form of the fractional porous medium equation in the hydrological setting. Commun. Nonlinear Sci. 76, 66–70 (2019)

    MathSciNet  Google Scholar 

  27. Huang, Z., Lin, G., Ardekani, A.M.: A mixed upwind/central WENO scheme for incompressible two-phase flows. J. Comput. Phys. 387, 455–480 (2019)

    MathSciNet  Google Scholar 

  28. Muha, B., C̆anić, S.: A generalization of the Aubin–Lions–Simon compactness lemma for problems on moving domains. J. Differ. Equ. 266(12), 8370–8418 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Fan, L., Yan, W.: The Cauchy problem for shallow water waves of large amplitude in Besov space. J. Differ. Equ. 267(3), 1705–1730 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Feng, B., Bronkhorst, C.A., Addessio, F.L., Morrow, B.M., Li, W.H., Lookman, T., Cerreta, E.K.: Coupled nonlinear elasticity, plastic slip, twinning, and phase transformation in single crystal titanium for plate impact loading. J. Mech. Phys. Solids 127, 358–385 (2019)

    MathSciNet  Google Scholar 

  31. Hyman, D.M., Bursik, M.I., Pitman, E.B.: Pressure-driven gas flow in viscously deformable porous media: application to lava domes. J. Fluid Mech. 869, 85–109 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Michele, S., Renzi, E., Sammarco, P.: Weakly nonlinear theory for a gate-type curved array in waves. J. Fluid Mech. 869, 238–263 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Shen, M., Liu, Y.: Subharmonic resonant interaction of a gravity-capillary progressive axially symmetric wave with a radial cross-wave. J. Fluid Mech. 869, 439–467 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Auzinger, W., Hofstätter, H., Koch, O.: Symmetrized local error estimators for time-reversible one-step methods in nonlinear evolution equations. J. Comput. Appl. Math. 356, 339–357 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Chen, M., Guo, Q., Lu, D., Hu, W.: Variational approach for breathers in a nonlinear fractional Schrödinger equation. Commun. Nonlinear Sci. 71, 73–81 (2019)

    MathSciNet  Google Scholar 

  36. Liu, R., Chen, X., Wang, X.: Effects of thermocapillarity on the dynamics of an exterior coating flow of a self-rewetting fluid. Int. J. Heat Mass Trans. 136, 692–701 (2019)

    Google Scholar 

  37. Long, W., Wu, T., Liang, X., Xu, S.: Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst. Appl. 123, 108–126 (2019)

    Google Scholar 

  38. Zhao, Z., Han, B.: Lump solutions of a (3+1)-dimensional B-type KP equation and its dimensionally reduced equations. Anal. Math. Phys. 9(1), 119–130 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Xian, D.Q., Jiang, Y., Kang, X.R.: Consistent KdV expansion method and its applications to the KP equation. J. Comput. Appl. Math. 366, 112423 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Yu, X., Sun, Z.Y.: Unconventional characteristic line for the nonautonomous KP equation. Appl. Math. Lett. 100, 106047 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Hosseini, K., Aligoli, M., Mirzazadeh, M., Eslami, M., Gomez-Aguilar, J.F.: Dynamics of rational solutions in a new generalized Kadomtsev–Petviashvili equation. Mod. Phys. Lett. B 33(35), 1950437 (2020)

    MathSciNet  Google Scholar 

  42. Yu, J., Wang, F., Ma, W., Sun, Y., Khalique, C.M.: Multiple-soliton solutions and lumps of a (3+1)-dimensional generalized KP equation. Nonlinear Dyn. 95(2), 1687–1692 (2019)

    Google Scholar 

  43. Cheng, J., He, J.: Miura and auto-Bäcklund transformations for the discrete KP and mKP hierarchies and their constrained cases. Commun. Nonlinear Sci. 69, 187–197 (2019)

    MathSciNet  Google Scholar 

  44. Rao, J., Mihalache, D., Cheng, Y., He, J.: Lump-soliton solutions to the Fokas system. Phys. Lett. A 383(11), 1138–1142 (2019)

    MathSciNet  Google Scholar 

  45. Liu, W., Wazwaz, A.M., Zheng, X.: Families of semi-rational solutions to the Kadomtsev–Petviashvili I equation. Commun. Nonlinear Sci. 67, 480–491 (2019)

    MathSciNet  Google Scholar 

  46. Wu, K., Zhou, F.: Nodal solutions for a Kirchhoff type problem in \(\text{ R }^{N}\). Appl. Math. Lett. 88, 58–63 (2019)

    MathSciNet  Google Scholar 

  47. Das, A., Ghosh, N.: Bifurcation of traveling waves and exact solutions of Kadomtsev–Petviashvili modified equal width equation with fractional temporal evolution. Comput. Appl. Math. 38(1), 9 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Rao, J., He, J., Mihalache, D., Cheng, Y.: Dynamics and interaction scenarios of localized wave structures in the Kadomtsev–Petviashvili-based system. Appl. Math. Lett. 94, 166–173 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Ehrnström, M., Groves, M.D.: Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev–Petviashvili equation. Nonlinearity 31(12), 5351 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Verma, P., Kaur, L.: Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomstev–Petviashvili (BKP)–Boussinesq equation. Appl. Math. Comput. 346, 879–886 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Ratliff, D.J.: Flux singularities in multiphase wavetrains and the Kadomtsev–Petviashvili equation with applications to stratified hydrodynamics. Stud. Appl. Math. 142(2), 109–138 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Hao, X., Liu, Y., Li, Z., Ma, W.X.: Painlevé analysis, soliton solutions and lump-type solutions of the (3+1)-dimensional generalized KP equation. Comput. Math. Appl. 77(3), 724–730 (2019)

    MathSciNet  Google Scholar 

  53. Feng, L.L., Zhang, T.T.: Homoclinic breather waves, rogue waves and solitary waves for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Int. J. Numer. Method. Heat Fluid Flow 29(2), 553–568 (2019)

    Google Scholar 

  54. Tian, S.F., Ma, P.L.: On the quasi-periodic wave solutions and asymptotic analysis to a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Commun. Theor. Phys. 62(2), 245 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Li, M.Z., Tian, B., Sun, Y., Wu, X.Y., Zhang, C.R.: Breather wave, rogue wave and lump wave solutions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid. Mod. Phys. Lett. B 32(20), 1850223 (2018)

    MathSciNet  Google Scholar 

  56. Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    MATH  Google Scholar 

Download references

Acknowledgements

Wenjun Liu and Qin Zhou are contributed equally to this work. The work of Wenjun Liu was supported by the National Natural Science Foundation of China (11674036 and 11875008); Beijing Youth Top-notch Talent Support Program (2017000026833ZK08); Beijing Natural Science Foundation (3182028); Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, IPOC2019ZZ01); The Fundamental Research Funds for the Central Universities (500419305). This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under Grant No. (KEP-64-130-38). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Zhang, H., Zhou, Q. et al. The mixed interaction of localized, breather, exploding and solitary wave for the (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics. Nonlinear Dyn 100, 1611–1619 (2020). https://doi.org/10.1007/s11071-020-05598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05598-3

Keywords

Navigation