Skip to main content
Log in

Theoretical design of controlled digitized chaotic systems with periodic orbit of upper limit length in digital circuit

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

When chaotic systems are realized in digital circuit, it will collapse in finite fields eventually and show complex periodic behavior. In the literature, there do not seem to be good bases for designing schemes to reduce its negative influence on digitized chaotic systems in digital circuit. In this paper, the influence of digital circuit on chaotic system is studied, and an approach based on the introduction of control terms is discussed to improve the periodic orbits of digitized chaotic systems. The approach is illustrated using the digitized chaotic Logistic map as a typical example. It is proved that the periodic orbits of digitized Logistic map can be well controlled, and the length of periodic orbit can reach the upper limit. Furthermore, the simplest nonlinear dynamical system based on digitized Logistic map in digital circuit is proposed, in which the length of periodic orbit also reaches the upper limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pan, J., Ding, Q., Du, B.X.: A new improved scheme of chaotic masking secure communication based on Lorenz system. Int. J. Bifurc. Chaos 22, 1250125 (2012)

    Article  Google Scholar 

  2. Zhu, Z., Zhang, W., Wong, K., Yu, H.: A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 181, 1171–1186 (2011)

    Article  Google Scholar 

  3. Bhatnagar, G., Wu, Q.: Chaos-based security solution for fingerprint data during communication and transmission. IEEE Trans. Instrum. Meas. 61, 876–887 (2012)

    Article  Google Scholar 

  4. Wang, C.F., Ding, Q.: SM4 key scheme algorithm based on chaotic system. Acta Phys. Sin. 64, 020504 (2017)

    Google Scholar 

  5. Chen, G., Mao, Y., Chuil, C.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21, 749–761 (2017)

    Article  MathSciNet  Google Scholar 

  6. Wang, C.F., Fan, C.L., Ding, Q.: Constructing discrete chaotic systems with positive Lyapunov exponents. Int. J. Bifurc. Chaos 28, 1850084 (2018)

    Article  MathSciNet  Google Scholar 

  7. Zhang, Y.: The unified image encryption algorithm based on chaos and cubic S-Box. Inf. Sci. 450, 361–377 (2018)

    Article  MathSciNet  Google Scholar 

  8. Lin, T., Chua, L.O.: On chaos of digital filters in the real world. IEEE Trans. Circuits Syst. 38, 557–558 (1991)

    Article  Google Scholar 

  9. Wheeler, D., Matthews, R.: Supercomputer investigations of a chaotic encryption algorithm. Cryptologia 15, 140–152 (1991)

    Article  Google Scholar 

  10. Wang, C.F., Fan, C.L., Feng, K., Huang, X., Ding, Q.: Analysis of the time series generated by a new high-dimensional discrete chaotic system. Complexity 2018, 9818520 (2018)

    MATH  Google Scholar 

  11. Lin, Z.S., Yu, S.M.: Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans. Circuit Syst. Video 25, 1203–1216 (2015)

    Article  Google Scholar 

  12. Heidari-Bateni, G., Mcgillem, C.: Chaotic direct sequence spread-spectrum communication system. IEEE Trans. Commun. 42, 1524–1527 (1994)

    Article  Google Scholar 

  13. Zhou, Y., Hua, Z.Y., Pun, C., Chen, P.: Cascade chaotic system with applications. IEEE Trans. Cybern. 45, 2001–2012 (2015)

    Article  Google Scholar 

  14. Yang, B., Liao, X.F.: Period analysis of the Logistic map for the finite filed. China Inf. Sci. 60, 022302 (2017)

    Article  Google Scholar 

  15. Yang, B., Liao, X.F.: Some properties of the Logistic map over the finite field and its application. Signal Process. 153, 231–242 (2018)

    Article  Google Scholar 

  16. Zheng, J., Hu, H.P., Xia, X.: Applications of symbolic dynamics in counteracting the dynamical degradation of digital chaos. Nonlinear Dyn. 94, 1535–1546 (2018)

    Article  Google Scholar 

  17. Liu, L., Lin, J., Miao, S., Liu, B.: A double perturbation method for reducing dynamical degradation of the digital baker map. Int. J. Bifurc. Chaos. 27, 1750103 (2017)

    Article  MathSciNet  Google Scholar 

  18. Wu, Y., Zhou, Y., Bao, L.: Discrete wheel-switching chaotic system and applications. IEEE Trans. Circuits Syst. I(61), 3469–3477 (2017)

    Google Scholar 

  19. Hu, H.P., Deng, Y.S., Liu, L.F.: Counteracting the dynamical degradation of digital chaos via hybrid control. Commun. Nonlinear Sci. Numer. Simul. 19, 1970–1984 (2014)

    Article  Google Scholar 

  20. Liu, Y., Luo, Y., Song, S., Cao, L., Liu, J., Harkin, J.: Counteracting dynamical degradation of digital chaotic Chebyshev map via perturbation. Int. J. Bifurc. Chaos. 27, 1750033 (2017)

    Article  MathSciNet  Google Scholar 

  21. Wang, Q.X., Yu, S.M., Li, C., Lu, J., Fang, X., Guyeux, C., Bahi, J.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I 63, 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  22. Li, C.Q., Feng, B.B., Li, S.J., Kurths, J., Chen, G.R.: Dynamic analysis of digital chaotic maps via state-mapping networks. IEEE Trans. Circuits Syst. I 66, 2322–2335 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kocarev, L., Szczepanski, J., Amigo, J.M., Tomovski, I.: Discrete chaos-i: theory. IEEE Trans. Circuits Syst. I 53, 1300–1309 (2006)

    Article  MathSciNet  Google Scholar 

  24. Coomes, B.A., Hüseyin, K., Palmer, K.J.: Shadowing in discrete dynamical systems. In: Six Lectures On Dynamical Systems (1996)

  25. Eichenauer-Herrmann, J.: On the Period Length of Congruential Pseudorandom Number Sequences Generated by Inversions. Elsevier, Amsterdam (1990)

    Book  Google Scholar 

  26. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)

    Article  MathSciNet  Google Scholar 

  27. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99, 332–334 (1992)

    Article  MathSciNet  Google Scholar 

  28. Klimov, A., Shamir, A.: A new class of invertible mappings. In: Cryptographic Hardware and Embedded Systems-CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13–15, 2002, Revised Papers. Springer (2002)

  29. May, R.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

Download references

Funding

This work is supported financially by National Natural Science Foundation of China (No. 61571181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ding, Q. Theoretical design of controlled digitized chaotic systems with periodic orbit of upper limit length in digital circuit. Nonlinear Dyn 98, 257–268 (2019). https://doi.org/10.1007/s11071-019-05187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05187-z

Keywords

Navigation