Skip to main content
Log in

Broken and unbroken \(\varvec{\mathcal {PT}}\)-symmetric solutions of semi-discrete nonlocal nonlinear Schrödinger equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this letter, we obtain multi-soliton solutions in terms of ratio of ordinary determinants for semi-discrete nonlocal nonlinear Schrödinger (sd-NNLS) equation by employing the Darboux transformation. We construct explicit expressions of single and double soliton solutions in zero background. We obtain symmetry-broken and symmetry-unbroken soliton solutions of sd-NNLS equation by using appropriate eigenfunctions. We notice that for symmetry non-preserving case, the potential term exhibits stable structure whereas individual fields display instability. We also obtain blowup or oscillating singular-type soliton solutions for symmetry-preserving case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  2. Sarma, A.K., Musslimani, M.A., Christodoulides, D.N.: Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities. Phys. Rev. E 89, 052918 (2014)

    Article  Google Scholar 

  3. Valchev, T., Slavova, A.: Mathematics in Industry, vol. 36. Cambridge Scholars Publishing, Cambridge (2014)

    Google Scholar 

  4. Khare, A., Saxena, A.: Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations. J. Math. Phys. 56, 032104 (2015)

    Article  MathSciNet  Google Scholar 

  5. Wen, X.Y., Yan, Z., Yang, Y.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 (2016)

    Article  MathSciNet  Google Scholar 

  6. Priya, N.V., Senthivelan, M., Rangarajan, G., Lakshmanan, M.: On symmetry preserving and symmetry broken bright and dark and antidark soliton solutions of nonlocal nonlinear Schrödinger equation. Phys. Lett. A 383, 15 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bender, C.M., Boettcher, S.: Real Spectra in Non-Hermitian Hamiltonians Having \(\cal{PT}\) Symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  Google Scholar 

  8. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in \(\cal{PT}\) periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Article  Google Scholar 

  9. Longhi, S.: Bloch oscillations in complex crystals with \(\cal{PT}\) symmetry. Phys. Rev. Lett. 103, 123601 (2009)

    Article  Google Scholar 

  10. Markum, H., Pullirsch, R., Wettig, T.: Non-Hermitian random matrix theory and lattice QCD with chemical potential. Phys. Rev. Lett. 83, 484 (1999)

    Article  Google Scholar 

  11. Cartarius, H., Wunner, G.: Model of a \(\cal{PT}\)-symmetric Bose–Einstein condensate in a \(\delta \)-function double-well potential. Phys. Rev. A 86, 013612 (2012)

    Article  Google Scholar 

  12. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in \(\cal{PT}\) symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    Article  Google Scholar 

  13. Guo, A., et al.: Observation of \(\cal{PT}\)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  Google Scholar 

  14. Ruter, C.E., et al.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  15. Kottos, T.: Broken symmetry makes light work. Nat. Phys. 6, 166 (2010)

    Article  Google Scholar 

  16. Giorgi, G.L.: Spontaneous \(\cal{PT}\) symmetry breaking and quantum phase transitions in dimerized spin chains. Phys. Rev. B 82, 052404 (2010)

    Article  Google Scholar 

  17. Regensburger, A., et al.: Parity-time synthetic photonic lattices. Nature (London) 488, 167 (2012)

    Article  Google Scholar 

  18. Joglekar, Y.N., Thompson, C., Scott, D.D., Vemuri, G.: Optical waveguide arrays: quantum effect and \(\cal{PT}\) symmetry breaking. Eur. Phys. J. Appl. Phys. 63, 30001 (2013)

    Article  Google Scholar 

  19. El-Ganainy, R., Makris, K.G., Khajavikhan, M., Musslimani, Z.H., Rotter, S., Christodoulides, D.N.: Non-Hermitian physics and \(\cal{PT}\) symmetry. Nat. Phys. 14, 11 (2018)

    Article  Google Scholar 

  20. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equation. J. Math. Phys. 16, 598 (1975)

    Article  MathSciNet  Google Scholar 

  21. Davydov, A.S.: The theory of contraction of proteins under their excitation. J. Theor. Biol. 38, 559 (1973)

    Article  Google Scholar 

  22. Su, W.P., Schrieffer, J.R., Heeger, A.J.: Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979)

    Article  Google Scholar 

  23. Kenkre, V.M., Campbell, D.K.: Self-trapping on a dimer: time-dependent solutions of a discrete nonlinear Schrödinger equation. Phys. Rev. B 34, 4959 (1986)

    Article  Google Scholar 

  24. Papaanicoulau, N.: Complete integrability for a discrete Heisenberg chain. J. Phys. A: Math. Gen. 20, 3637 (1987)

    Article  MathSciNet  Google Scholar 

  25. Abdullaev, F.K., Kartashov, Y.V., Zezyulin, D.A.: Solitons in \(\cal{PT}\)-symmetric nonlinear lattices. Phys. Rev. A 83, 041805 (2011)

    Article  Google Scholar 

  26. Fring, A.: \(\cal{PT}\)-Symmetric deformations of integrable models. Philos. Trans. R. Soc. A 371, 20120064 (2013)

    Article  MathSciNet  Google Scholar 

  27. Zyablovsky, A.A., Vinorgradow, A.P., Pukhov, A.A., Dorofeenko, A.V., Lisyansky, A.A.: \(\cal{PT}\)-symmetry in optics. Phys. Uspekhi 57, 1063 (2014)

    Article  Google Scholar 

  28. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete \(\cal{PT}\) symmetric model. Phys. Rev. Lett. E 90, 032912 (2014)

    Article  Google Scholar 

  29. Grahovski, G.G., Mohammed, A.J., Susanto, H.: Nonlocal reductions of the Ablowitz–Ladik equation. arXiv:1711.08419 [nlin.SI]

  30. Mitchell, M., Segev, M., Coskun, T.H., Christodoulides, D.N.: Theory of self-trapped spatially incoherent light beams. Phys. Rev. Lett. 79, 4990 (1997)

    Article  Google Scholar 

  31. Ma, L.Y., Zhu, Z.N.: N-soliton solution for an integrable nonlocal focusing nonlinear Schrödinger equation. Appl. Math. Lett. 59, 115 (2016)

    Article  MathSciNet  Google Scholar 

  32. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  33. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Germany (1991)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hanif.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, Y., Saleem, U. Broken and unbroken \(\varvec{\mathcal {PT}}\)-symmetric solutions of semi-discrete nonlocal nonlinear Schrödinger equation. Nonlinear Dyn 98, 233–244 (2019). https://doi.org/10.1007/s11071-019-05185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05185-1

Keywords

Navigation