Skip to main content
Log in

Fractional-order model and experimental verification for broadband hysteresis in piezoelectric actuators

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Piezoelectric actuators are increasingly popular for high-accuracy and high-speed nanopositioning systems. However, nonlinear rate-dependent hysteresis of piezoelectric actuators leads to many difficulties in accurately analyzing the dynamic characteristics of piezoelectric nanopositioning systems in a wide frequency band. This paper proposes fractional-order model methods to characterize the hysteresis of piezoelectric actuators in time and frequency domains. Input voltage and output displacement of the piezoelectric actuator in time domain are employed to identify the parameters of the fractional-order model. Moreover, amplitude and phase errors are utilized to obtain the fractional model in frequency domain. Simulations and experiments are performed to validate the effectiveness of the proposed fractional-order model. The results show that the identified model in frequency domain is preferable in a wider frequency range from 1 to 200 Hz, and the maximum error is about 4.47%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, Z., Yang, X., Yan, P.: Large dynamic range tracking of an XY compliant nanomanipulator with cross-axis coupling reduction. Mech. Syst. Signal. Process. 117, 757–770 (2019)

    Article  Google Scholar 

  2. Liu, Y., Yang, X., Chen, W., Xu, D.: A bonded-type piezoelectric actuator using the first and second bending vibration modes. IEEE. T. Ind. Electron. 63(3), 1676–1683 (2016)

    Article  Google Scholar 

  3. Ling, M., Cao, J., Jiang, Z., Lin, J.: Modular kinematics and statics modeling for precision positioning stage. Mech. Mach. Theory. 107, 274–282 (2017)

    Article  Google Scholar 

  4. Orszulik, R.R., Shan, J.: Output feedback integral control of piezoelectric actuators considering hysteresis. Precis. Eng. 47, 90–96 (2017)

    Article  Google Scholar 

  5. Ling, M., Cao, J., Zeng, M., Lin, J., Inman, D.J.: Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms. Smart. Mater. Struct. 25(7), 075022 (2016)

    Article  Google Scholar 

  6. Ji, D.H., Koo, J.H., Yoo, W.J., Ju, H.P.: Precise tracking control of piezoelectric actuators based on a hysteresis observer. Nonlinear Dyn. 70(3), 1969–1976 (2012)

    Article  MathSciNet  Google Scholar 

  7. Qi, C., Gao, F., Li, H.X., Li, S., Zhao, X., Dong, Y.: An incremental Hammerstein-like modeling approach for the decoupled creep, vibration and hysteresis dynamics of piezoelectric actuator. Nonlinear Dyn. 82(4), 1–22 (2015)

    Article  MathSciNet  Google Scholar 

  8. Gu, G.Y., Yang, M.J., Zhu, L.M.: Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl–Ishlinskii model. Rev. Sci. Instrum. 83(6), 65–83 (2012)

    Article  Google Scholar 

  9. Ge, P., Jouaneh, M.: Modeling hysteresis in piezoceramic actuators. Precis. Eng. 17(3), 211–221 (1995)

    Article  Google Scholar 

  10. Tang, H., Li, Y.: Feedforward nonlinear PID control of a novel micromanipulator using Preisach hysteresis compensator. Robot. Cim Int. Manuf. 34, 124–132 (2015)

    Article  Google Scholar 

  11. Li, Z., Zhang, X., Su, C.Y., Chai, T.: Nonlinear control of systems preceded by preisach hysteresis description: a prescribed adaptive control approach. IEEE. Trans. Contr. Syst. T. 24(2), 451–460 (2016)

    Google Scholar 

  12. Yang, M.J., Gu, G.Y., Zhu, L.M.: Parameter identification of the generalized Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm optimization. Sens. Actuat. A Phys. 189(2), 254–265 (2013)

    Article  Google Scholar 

  13. Gu, G.Y., Zhu, L.M., Su, C.Y.: Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model. IEEE. Trans. Ind. Electron. 61(3), 1583–1595 (2014)

    Article  Google Scholar 

  14. Janaideh, M.A., Krejci, P.: Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE ASME Trans. Mech. 18(5), 1498–1507 (2013)

    Article  Google Scholar 

  15. Qin, Y., Tian, Y., Zhang, D., Shirinzadeh, B., Fatikow, S.: A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications. IEEE ASME Trans. Mech. 18(3), 981–989 (2013)

    Article  Google Scholar 

  16. Rakotondrabe, M.: Multivariable classical Prandtl–Ishlinskii hysteresis modeling and compensation and sensorless control of a nonlinear 2-dof piezoactuator. Nonlinear Dyn. 89(1), 1–19 (2017)

    Article  Google Scholar 

  17. Liu, Y., Shan, J., Gabbert, U., Qi, N.: Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach. Smart Mater. Struct. 22(11), 5020 (2013)

    Article  Google Scholar 

  18. Liu, Y., Shan, J., Gabbert, U., Qi, N.: Hysteresis compensation and trajectory preshaping for piezoactuators in scanning applications. Smart Mater. Struct. 23(1), 015015 (2014)

    Article  Google Scholar 

  19. Shan, J., Liu, Y., Gabbert, U., Cui, N.: Control system design for nano-positioning using piezoelectric actuators. Smart Mater. Struct. 25(2), 025024 (2016)

    Article  Google Scholar 

  20. Bouc, R.: A mathematical model for hysteresis. Acta. Acust. United Ac 24(1), 16–25(10) (1971)

    Google Scholar 

  21. Wang, D.H., Zhu, W., Yang, Q.: Linearization of stack piezoelectric ceramic actuators based on Bouc–Wen model. J. Intel. Mat. Syst. Str. 22(5), 401–413 (2010)

    Article  Google Scholar 

  22. Wang, Z.Y., Mao, J.Q.: On PSO Based Bouc–Wen modeling for piezoelectric actuator. In: International Conference, pp. 125–134 (2010)

    Chapter  Google Scholar 

  23. Chen, Y.Q., Xue, D., Dou, H.: Fractional calculus and biomimetic control. In: IEEE International Conference on Robotics and Biomimetics, pp. 901–906 (2005)

  24. Chen, Y.Q.: Ubiquitous fractional order controls? IFAC Proc. Vol. 39(11), 481–492 (2010)

    Article  Google Scholar 

  25. Zhou, S., Cao, J., Chen, Y.: Genetic algorithm-based identification of fractional-order systems. Entropy 15(5), 1624–1642 (2013)

    Article  MathSciNet  Google Scholar 

  26. Danca, M.F., FecKan, M., Kuznetsov, N.V., Chen, G.: Fractional-order PWC systems without zero Lyapunov exponents. Nonlinear Dyn. 91(4), 2523–2540 (2018)

    Article  Google Scholar 

  27. Fan, Y., Xia, H., Zhen, W., Li, Y.: Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function. Nonlinear Dyn. 9, 1–17 (2018)

    MATH  Google Scholar 

  28. Wang, L., Cheng, P., Wang, Y.: Frequency domain subspace identification of commensurate fractional order input time delay systems. Int. J. Control Autom. 9(2), 310–316 (2011)

    Article  Google Scholar 

  29. Liu, Y., Liu, H., Zhu, D.: Modeling, identification, and compensation of fractional-order creep in frequency domain for piezoactuators. Electron. Lett. 52(17), 1444–1445 (2016)

    Article  Google Scholar 

  30. Zakeri, E., Moezi, S., Eghtesad, M.: Optimal interval type-2 fuzzy fractional order super twisting algorithm: a second order sliding mode controller for fully-actuated and under-actuated nonlinear systems. ISA Trans. 85, 13–32 (2018)

    Article  Google Scholar 

  31. Zolotas, A.C., Goodall, R.M.: New insights from fractional order skyhook damping control for railway vehicles. Veh. Syst. Dyn. 56(11), 1658–1681 (2018)

    Article  Google Scholar 

  32. Rebai, A., Guesmi, K., Gozim, D., Hemici, B.: Identification of the PEA hysteresis property using a fractional order model. In: International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, pp. 1038–1043 (2015)

  33. Li, L.L., Gu, G.Y., Zhu, L.M.: A fractional-order active damping control approach for piezo-actuated nanopositioning stages. In: International Conference on Manipulation, Automation and Robotics at Small Scales, pp. 1–6 (2016)

  34. Liu, Y., Shan, J., Gabbert, U., Qi, N.: Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach. Smart Mater. Struct. 22(11), 115020 (2013)

    Article  Google Scholar 

  35. Zakeri, E., Moezi, S.A., Bazargan-Lari, Y., Zare, A.: Multi-tracker optimization algorithm: a general algorithm for solving engineering optimization problems. Iran J. Sci. Technol. Trans. Mech. Eng. 41(4), 315–341 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by the National Key Research & Development Program of China (Grant No. 2018YFB1306100) and the National Natural Science Foundation of China (Grant Nos. 51575426, 51421004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Cao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Cao, J. & Chen, Y. Fractional-order model and experimental verification for broadband hysteresis in piezoelectric actuators. Nonlinear Dyn 98, 3143–3153 (2019). https://doi.org/10.1007/s11071-019-05128-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05128-w

Keywords

Navigation