Skip to main content
Log in

Nonlinear system identification and trajectory tracking control for a flybarless unmanned helicopter: theory and experiment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new nonlinear system identification method in time domain for a small-scale flybarless unmanned helicopter based on an adaptive differential evolution algorithm. By analyzing and processing the real input and output data, a nonlinear parametric model including heave dynamic model, yaw dynamic model and longitudinal–latitudinal subsystem is established. The validity of the identified model is confirmed through comparing the output of the mathematical model with the actual flight response under the same control input. In addition, a power-based identification strategy is propounded to reduce the difficulty of data acquisition and improve the efficiency of the identification process. Moreover, the trajectory tracking controller is designed and implemented based on the identified model using the backstepping control technology. The actual autonomous flight experimental results further demonstrate the accuracy of the identified nonlinear model and the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Abas, N., Legowo, A., Ibrahim, Z., Rahim, N., Kassim, A.M.: Modeling and system identification using extended kalman filter for a quadrotor system. Appl. Mech. Mater. 313, 976–981 (2013)

    Article  Google Scholar 

  2. Bergamasco, M., Lovera, M.: Identification of linear models for the dynamics of a hovering quadrotor. IEEE Trans. Control Syst. Technol. 22(5), 1696–1707 (2014)

    Article  Google Scholar 

  3. Bian, Q., Zhao, K., Wang, X., Xie, R.: System identification method for small unmanned helicopter based on improved particle swarm optimization. J. Bionic Eng. 13(3), 504–514 (2016)

    Article  Google Scholar 

  4. Bolourchi, A., Masri, S.F., Aldraihem, O.J.: Development and application of computational intelligence approaches for the identification of complex nonlinear systems. Nonlinear Dyn. 79(2), 765–786 (2015)

    Article  Google Scholar 

  5. Cai, G., Chen, B.M., Dong, X., Lee, T.H.: Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatronics 21(5), 803–820 (2011)

    Article  Google Scholar 

  6. Cai, G., Chen, B.M., Peng, K., Dong, M., Lee, T.H.: Modeling and control of the yaw channel of a UAV helicopter. IEEE Trans. Ind. Electron. 55(9), 3426–3434 (2008)

    Article  Google Scholar 

  7. Cai, G., Chen, B.M., Tong, H.L., Kai, Y.L.: Comprehensive nonlinear modeling of an unmanned-aerial-vehicle helicopter. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2008)

  8. Casbeer, D.W., Kingston, D.B., Beard, R.W., McLain, T.W.: Cooperative forest fire surveillance using a team of small unmanned air vehicles. Int. J. Syst. Sci. 37(6), 351–360 (2006)

    Article  MATH  Google Scholar 

  9. Dalei, S., Juntong, Q., Jianda, H.: Model identification and active modeling control for small-size unmanned helicopters: theory and experiment. In: AIAA Guidance, Navigation, and Control Conference (2010)

  10. Ding, L., Wu, H., Yao, Y.: Chaotic artificial bee colony algorithm for system identification of a small-scale unmanned helicopter. Int. J. Aerosp. Eng. 2015, 1–15 (2015)

    Article  Google Scholar 

  11. Dorobantu, A., Murch, A., Mettler, B., Balas, G.: System identification for small, low-cost, fixed-wing unmanned aircraft. J. Aircr. 50(4), 1117–1130 (2013)

    Article  Google Scholar 

  12. Gurtner, A., Greer, D.G., Glassock, R., Mejias, L., Walker, R.A., Boles, W.W.: Investigation of fish-eye lenses for small-UAV aerial photography. IEEE Trans. Geosci. Remote Sens. 47(3), 709–721 (2009)

    Article  Google Scholar 

  13. Hausamann, D., Zirnig, W., Schreier, G., Strobl, P.: Monitoring of gas pipelines—a civil UAV application. Aircr. Eng. Aerosp. Technol. 77(5), 352–360 (2005)

    Article  Google Scholar 

  14. Heffley, R.K., Mnich, M.A.: Minimum-complexity helicopter simulation math model. Technical Report NASA-CR-177476, USAAVSCOM-TR-87-A-7, NASA, Moffett Field, CA, USA (1988)

  15. Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61(1), 29–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, S., Wang, Y., Ji, Z.: A new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithm. Nonlinear Dyn. 79(4), 2553–2576 (2015)

    Article  MathSciNet  Google Scholar 

  17. Lei, X., Du, Y.: A linear domain system identification for small unmanned aerial rotorcraft based on adaptive genetic algorithm. J. Bionic Eng. 7(2), 142–149 (2010)

    Article  Google Scholar 

  18. Lei, X., Guo, K.: The model identification for small unmanned aerial rotorcraft based on adaptive ant colony algorithm. J. Bionic Eng. 9(4), 508–514 (2012)

    Article  Google Scholar 

  19. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  20. Mettler, B.: Identification Modeling and Characteristics of Miniature Rotorcraft. Kluwer Academic Publishers, Norwell (2003)

    Book  Google Scholar 

  21. Mettler, B., Dever, C., Feron, E.: Scaling effects and dynamic characteristics of miniature rotorcraft. J. Guid. Control Dyn. 27(3), 466–478 (2004)

    Article  Google Scholar 

  22. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  23. Raptis, I.A., Valavanis, K.P., Moreno, W.A.: System identification and discrete nonlinear control of miniature helicopters using backstepping. J. Intell. Robot. Syst. 55(2), 223–243 (2009)

    Article  MATH  Google Scholar 

  24. Raptis, I.A., Valavanis, K.P., Moreno, W.A.: A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Trans. Control Syst. Technol. 19(2), 465–473 (2011)

    Article  Google Scholar 

  25. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang, S., Zheng, Z., Qian, S., Zhao, X.: Nonlinear system identification of a small-scale unmanned helicopter. Control Eng. Pract. 25(1), 1–15 (2014)

    Article  Google Scholar 

  27. Wang, F., Cui, J., Chen, B.M., Lee, T.H.: Flight Dynamics Modeling of Coaxial Rotorcraft UAVs, pp. 1217–1256. Springer, Dordrecht (2015)

    Google Scholar 

  28. Wang, T., Chen, Y., Liang, J., Wu, Y., Wang, C., Zhang, Y.: Chaos-genetic algorithm for the system identification of a small unmanned helicopter. J. Intell. Robot. Syst. 67(3), 323–338 (2012)

    Article  MATH  Google Scholar 

  29. Zhou, B., Li, Z., Zheng, Z., Tang, S.: Nonlinear adaptive tracking control for a small-scale unmanned helicopter using a learning algorithm with the least parameters. Nonlinear Dyn. 89(2), 1289–1308 (2017)

    Article  MATH  Google Scholar 

  30. Zhu, B., Zuo, Z.: Approximate analysis for main rotor flapping dynamics of a model-scaled helicopter with Bell–Hiller stabilizing bar in hovering and vertical flights. Nonlinear Dyn. 85(3), 1705–1717 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61603407) and the Basic and Advanced Research Project of ChongQing (Grant No. cstc2016jcyjA0563).

The authors of this paper owe great thanks to Dr. Peng Li and Mr. Xuanying Li for their disinterested assistance in outdoor experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Lu, X., Tang, S. et al. Nonlinear system identification and trajectory tracking control for a flybarless unmanned helicopter: theory and experiment. Nonlinear Dyn 96, 2307–2326 (2019). https://doi.org/10.1007/s11071-019-04923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04923-9

Keywords

Navigation