Skip to main content
Log in

The resonance behavior in two coupled harmonic oscillators with fluctuating mass

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the resonance behavior in two coupled harmonic oscillators with fluctuating mass. Firstly, the statistic synchronization between the two particles is obtained and defined. Then, the analytical expression of the output amplitude gain is derived by using the stochastic averaging method. Based on the analytical result and some corresponding numerical results, we analyze the coupling’s influence on the resonance behaviors of the output amplitude gain, including the parameter-induced stochastic resonance, the bona fide resonance, and the stochastic resonance. In weak coupling region, the coupling can not only enhance or weaken the resonance behaviors, but also change the resonance forms. In strong coupling region, the two particles are forced together by the coupling force and move synchronously; thus, the coupling’s influence will vanish. Finally, some numerical simulations are performed to provide a verification and an intuitive understanding of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453 (1981)

    Article  MathSciNet  Google Scholar 

  2. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33 (1995)

    Article  Google Scholar 

  3. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998)

    Article  Google Scholar 

  4. Hänggi, P.: Stochastic resonance in biology. How noise can enhance detection of weak signals and help improve biological information processing. Chem. Phys. Chem. 3, 285 (2002)

    Article  Google Scholar 

  5. Zhang, W., Xiang, B.R.: A new single-well potential stochastic resonance algorithm to detect the weak signal. Talanta 70, 267 (2006)

    Article  Google Scholar 

  6. Chen, H., Varshney, P.K., Kay, S.M., Michels, J.H.: Theory of the stochastic resonance effect in signal detection: part I-fixed detectors. IEEE Trans. Signal Process 55, 3172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Soika, E., Mankin, R., Ainsaar, A.: Resonant behavior of a fractional oscillator with fluctuating frequency. Phys. Rev. E 81, 011141 (2010)

    Article  Google Scholar 

  8. Gang, H., Ditzinger, T., Ning, C.Z., Haken, H.: Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807 (1993)

    Article  Google Scholar 

  9. Cubero, D.: Finite-size fluctuations and stochastic resonance in globally coupled bistable systems. Phys. Rev. E 77, 021112 (2008)

    Article  Google Scholar 

  10. Tang, Y., Zou, W., Lu, J., Kurths, J.: Stochastic resonance in an ensemble of bistable systems under stable distribution noises and nonhomogeneous coupling. Phys. Rev. E 85, 046207 (2012)

    Article  Google Scholar 

  11. Atsumi, Y., Hata, S., Nakao, H.: Phase ordering in coupled noisy bistable systems on scale-free networks. Phys. Rev. E 88, 052806 (2013)

    Article  Google Scholar 

  12. Pikovsky, A., Zaikin, A., Ma, D.L.C.: System size resonance in coupled noisy systems and in the Ising model. Phys. Rev. Lett. 88, 050601 (2002)

    Article  Google Scholar 

  13. Tessone, C.J., Mirasso, C.R., Toral, R., Gunton, J.D.: Diversity-induced resonance. Phys. Rev. Lett. 97, 194101 (2006)

    Article  Google Scholar 

  14. Li, J.H.: Effect of asymmetry on stochastic resonance and stochastic resonance induced by multiplicative noise and by mean-field coupling. Phys. Rev. E 66, 031104 (2002)

    Article  Google Scholar 

  15. Gitterman, M.: Classical harmonic oscillator with multiplicative noise. Phys. A 352, 309 (2005)

    Article  Google Scholar 

  16. Li, J.H., Han, Y.X.: Phenomenon of stochastic resonance caused by multiplicative asymmetric dichotomous noise. Phys. Rev. E 74, 051115 (2006)

    Article  Google Scholar 

  17. Li, J.H., Han, Y.X.: Giant-resonance for a four-dimensionally coupled system with dichotomous noise. Commun. Theor. Phys. 47, 672 (2007)

    Article  Google Scholar 

  18. Jiang, S., Guo, F., Zhou, Y., Gu, T.: Parameter-induced stochastic resonance in an over-damped linear system. Phys. A 375, 483 (2007)

    Article  Google Scholar 

  19. Li, J.: Enhancement and weakening of stochastic resonance for a coupled system. Chaos 21, 043115 (2011)

    Article  MATH  Google Scholar 

  20. He, G.T., Tian, Y., Wang, Y.: Stochastic resonance in a fractional oscillator with random damping strength and random spring stiffness. J. Stat. Mech. 9, 26 (2013)

    Google Scholar 

  21. He, G.T., Luo, R.Z., Luo, M.K.: Stochastic resonance in the overdamped fractional oscillator subject to multiplicative dichotomous noise. Phys. Scr. 88, 065009 (2013)

    Article  Google Scholar 

  22. Yu, T., Zhang, L., Luo, M.K.: Stochastic resonance in the fractional Langevin equation driven by multiplicative noise and periodically modulated noise. Phys. Scr. 88, 045008 (2013)

    Article  MATH  Google Scholar 

  23. He, G.T., Tian, Y., Luo, M.K.: Stochastic resonance in an underdamped fractional oscillator with signal-modulated noise. J. Stat. Mech. 2014, P05018 (2014)

    Article  MathSciNet  Google Scholar 

  24. Zhong, S.C., Ma, H., Peng, H., Zhnag, L.: Stochastic resonance in a harmonic oscillator with fractional-order external and intrinsic dampings. Nonlinear Dyn. 82, 535 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ausloos, M., Lambiotte, R.: Brownian particle having a fluctuating mass. Phys. Rev. E 73, 011105 (2006)

    Article  Google Scholar 

  26. Gitterman, M., Klyatskin, V.I.: Brownian motion with adhesion: harmonic oscillator with fluctuating mass. Phys. Rev. E 81, 051139 (2010)

    Article  Google Scholar 

  27. Gitterman, M., Shapiro, I.: Stochastic resonance in a harmonic oscillator with random mass subject to asymmetric dichotomous noise. J. Stat. Phys. 144, 139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sauga, A., Mankin, R., Ainsaar, A.: Resonant behavior of a fractional oscillator with fluctuating mass. Phys. Rev. E 81, 011141 (2010)

    Article  Google Scholar 

  29. Gitterman, M.: Mean-square displacement of a stochastic oscillator: linear vs quadratic noise. Phys. A 391, 3033 (2012)

    Article  MathSciNet  Google Scholar 

  30. Gitterman, M.: Oscillator with random trichotomous mass. Phys. A 391, 5343 (2012)

    Article  MathSciNet  Google Scholar 

  31. Yu, T.: The resonant behavior of a linear harmonic oscillator with fluctuating mass. Acta Phys. Sin. 62, 120504 (2013)

    Google Scholar 

  32. Yu, T., Luo, M.K., Hua, Y.: The resonant behavior of fractional harmonic oscillator with fluctuating mass. Acta Phys. Sin. 62, 210503 (2013)

    Google Scholar 

  33. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nicolis, C., Nicolis, G.: Coupling-enhanced stochastic resonance. Phys. Rev. E 96, 042214 (2017)

    Article  Google Scholar 

  35. Jiang, Y., Xin, H.: Coherent resonance in a one-way coupled system. Phys. Rev. E 62, 1846–1849 (2000)

    Article  Google Scholar 

  36. Broeck, C.V.D.: On the relation between white shot noise, Gaussian white noise, and the dichotomic Markov process. J. Stat. Phys. 31, 467 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shapiro, V.E., Loginov, V.M.: “Formulae of differentiation” and their use for solving stochastic equations. Phys. A 91, 563 (1978)

    Article  MathSciNet  Google Scholar 

  38. Droste, F., Lindner, B.: Integrate-and-fire neurons driven by asymmetric dichotomous noise. Biol. Cybern. 108, 825 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Reimann, P., Elston, T.C.: Kramers rate for thermal plus dichotomous noise applied to ratchets. Phys. Rev. Lett. 77, 5328 (1996)

    Article  Google Scholar 

  40. Si, M., Conrad, N.J., Shin, S., et al.: Low-frequency noise and random telegraph noise on near-ballistic III-V MOSFETs. IEEE Trans. Electron Devices 62, 3508 (2015)

    Article  Google Scholar 

  41. Simmons, G.F.: Differential Equations with Applications and Historical Notes. McGraw-Hill, New York (1991)

    Google Scholar 

  42. Cubero, D., Yaliraki, S.N.: Formal derivation of dissipative particle dynamics from first principles. Phys. Rev. E 72, 032101 (2005)

    Article  Google Scholar 

  43. Cubero, D., Yaliraki, S.N.: Inhomogeneous multiscale dynamics in harmonic lattices. J. Chem. Phys. 122, 034108 (2005)

    Article  Google Scholar 

  44. Csahk, Z., Family, F., Vicsek, T.: Transport of elastically coupled particles in an asymmetric periodic potential. Phys. Rev. E 55, 5179 (1997)

    Article  Google Scholar 

  45. Igarashi, A., Tsukamoto, S., Goko, H.: Transport properties and efficiency of elastically coupled Brownian motors. Phys. Rev. E 64, 051908 (2001)

    Article  Google Scholar 

  46. Kim, C., Lee, E.K., Talkner, P.: Numerical method for solving stochastic differential equations with dichotomous noise. Phys. Rev. E 73, 026101 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation for the Youth (Grants Nos. 11501385, 11401405, 11501386) and the China Postdoctoral Science Foundation (Grant No. 2017M620425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Zhang, L., Zhong, S. et al. The resonance behavior in two coupled harmonic oscillators with fluctuating mass. Nonlinear Dyn 96, 1735–1745 (2019). https://doi.org/10.1007/s11071-019-04881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04881-2

Keywords

Navigation