Skip to main content
Log in

Integrability and limit cycles in cubic Kukles systems with a nilpotent singular point

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, integrability problem and bifurcation of limit cycles for cubic Kukles systems which are assumed to have a nilpotent origin are investigated. A complete classification is given on the integrability conditions and proven to have a total of 7 cases. Bifurcation of limit cycles is also discussed; six or seven limit cycles can be obtained by two different perturbation methods. Integrability problem and bifurcation of limit cycles for the cubic Kukles systems with a nilpotent origin have been completely solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Christopher, C.J., Lloyd, N.G.: On the paper of Jin and Wang concerning the conditions for a centre in certain cubic systems. Bull. Lond. Math. Soc. 22, 5–12 (1990)

    Article  MATH  Google Scholar 

  2. Lloyd, N.G., Pearson, J.M.: Conditions for a centre and the bifurcation of limit cycles. In: Francoise, J.P., Roussarie, R. (eds.) Bifurcations of Planar Vector Fields. Lecture Notes Mathematics, vol. 1455, pp. 230–242. Springer, Berlin (1990)

    Chapter  Google Scholar 

  3. Lloyd, N.G., Pearson, J.M.: Computing centre conditions for certain cubic systems. J. Comput. Appl. Math. 40, 323–336 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sadovskii, A.P.: Solution of the center and foci problem for a cubic system of nonlinear oscillations. Differ. Uravn. (Russian) 33(2), 236–244 (1997)

    Google Scholar 

  5. Gine, J., Llibre, J., Claudia, V.: Centers for the Kukles homogeneous systems with odd degree. Bull. Lond. Math. Soc. 47(2), 315–324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gine, J., Llibre, J., Valls, C.: Centers for the Kukles homogeneous systems with even degree. J. Appl. Anal. Comput. 7(4), 1534–1548 (2017)

    MathSciNet  Google Scholar 

  7. Pearson, J.M., Lloyd, N.G.: Kukles revisited: advances in computing techniques. Comput. Math. Appl. 60(10), 2797–2805 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hill, J.M., Lloyd, N.G., Pearson, J.M.: Algorithmic derivation of isochronicity conditions. Nonlinear Anal. 67, 52–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hill, J.M., Lloyd, N.G., Pearson, J.M.: Centres and limit cycles for an extended Kukles system. Electron. J. Differ. Equ. 119, 1–23 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhauser, Boston (2009)

    MATH  Google Scholar 

  11. Sadovskii, A.P., Shcheglova, T.V.: Solution of the center–foci problem for a cubic system with nine parameters. Differ. Uravn. (Russian) 47(2), 209–224 (2011); Differ. Equ. 47(2), 208–223 (2011)

  12. Kushner, A.A., Sadovskii, A.P.: Center conditions for Lienard-type systems of degree four. Gos. Univ. Ser. 1 Fiz. Mat. Inform. (Russian) 2, 119–122 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Sadovskii, A.P., Shcheglova, T.V.: Center conditions for a polynomial differential system. Differ. Uravn. 49(2), 151164 (2013); Differ. Equ. 49(2), 151165 (2013)

  14. Han, M., Sheng, L., Zhang, X.: Bifurcation theory for finitely smooth planar autonomous differential systems. J. Differ. Equ. 264, 3596–3618 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, M., Hou, X., Sheng, L., Wang, C.: Theory of rotated equations and applications to a population model. Discrete Contin. Dyn. Syst. A 38, 2171–2185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han, M., Petek, T., Romanovski, V.G.: Reversibility in polynomial systems of ODEs. Appl. Math. Comput. 338, 55–71 (2018)

    MathSciNet  Google Scholar 

  17. Yu, P., Han, M., Li, J.: An improvement on the number of limit cycles bifurcating from a nondegenerate center of homogeneous polynomial systems. Int. J. Bifur. Chaos 28, 1850078 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rebollo-Perdomo, S., Vidal, C.: Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete Contin. Dyn. Syst. A 38(8), 4189–4202 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Alvarez, M.J., Gasull, A.: Generating limits cycles from a nilpotent critical point via normal forms. J. Math. Anal. Appl. 318, 271–287 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Y., Li, J.: New study on the center problem and bifurcations of limit cycles for the Lyapunov system II. Int. J. Bifur. Chaos 19(09), 3087–3099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, F., Liu, Y., Liu, Y., Yu, P.: Bi-center problem and bifurcation of limit cycles from nilpotent singular points in \(Z_2\)-equivariant cubic vector fields. J. Differ. Equ. 265(10), 4965–4992 (2018)

    Article  MATH  Google Scholar 

  22. Hill, J.M., Lloyd, N.G., Pearson, J.M.: Limit cycles of a predator? prey model with intratrophic predation. J. Math. Anal. Appl. 349, 544–555 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pitchford, J.W., Brindley, J.: Intratrophic predation in simple predator–prey models. Bull. Math. Biol. 60, 937–953 (1998)

    Article  MATH  Google Scholar 

  24. Manosa, V.: Periodic travelling waves in nonlinear reaction–diffusion equations via multiple Hopf bifurcation. Chaos Solitons Fractals 18(2), 241–257 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Li, J.: On third-order nilpotent critical points: integral factor method. Int. J. Bifur. Chaos 21(05), 1293–1309 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, M.: Remarks on the center and focus problem for planar systems. J. Shanghai Norm. Univ. 42, 565–579 (2013)

    Google Scholar 

  27. Sansone, G., Conti, R.: Non-linear Differential Equations. Macmillan, New York (1964)

    MATH  Google Scholar 

  28. Zhang, Z., Ding, T., Huang, W., Dong, Z.: The Qualitative Theory of Differential Equations. Science Press, Beijing (1997)

    Google Scholar 

  29. Amelbkin, V.V., Lukasevnky, N.A., Sadovski, A.P.: Nonlinear Oscillations in Second Order Systems. BGY Lenin. B. I. Press, Minsk (1992). (in Russian)

    Google Scholar 

  30. Liu, Y., Li, F.: Double bifurcation of nilpotent foci. Int. J. Bifur. Chaos 25(3), 1550036 (2015)

    Article  MATH  Google Scholar 

  31. Liu, T., Liu, Y., Li, F.: A kind of bifurcation of limit cycle from a nilpotent critical point. J. Appl. Anal. Comput. 8, 10–18 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewer for his/her valuable and detailed comments which have greatly improved our paper. This research was partially supported by the National Natural Science Foundation of China (Nos. 11601212, 2017A030313010,11501055), Natural Science Foundation of Shandong Province (No. ZR2018MA002) and Science and Technology Program of Guangzhou (No. 201707010426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} f_1&=4464 a_{11}^5 - 47460 a_{11}^4 b_{02} + 91260 a_{11}^3 b_{02}^2 \\&\quad -37155 a_{11}^2 b_{02}^3 \\&\quad - 3330 a_{11} b_{02}^4+ 2373 b_{02}^5+17520 a_{11}^5 \mu ^2\\&\quad - 59300 a_{11}^4 b_{02} \mu ^2 \\&\quad +42300 a_{11}^3 b_{02}^2 \mu ^2+ 11725 a_{11}^2 b_{02}^3 \mu ^2\\&\quad -13650 a_{11} b_{02}^4 \mu ^2 \\&\quad + 1765 b_{02}^5 \mu ^2 + 52500 a_{11}^3 b_{12}-195000 a_{11}^2 b_{02} b_{12} \\&\quad + 144375 a_{11} b_{02}^2 b_{12} - 1875 b_{02}^3 b_{12} +60500 a_{11}^3 \mu ^2 b_{12} \\&\quad - 187000 a_{11}^2 b_{02} \mu ^2 b_{12} +70375 a_{11} b_{02}^2 \mu ^2 b_{12} \\&\quad + 32125 b_{02}^3 \mu ^2 b_{12}+71250 a_{11} b_{12}^2 - 213750 b_{02} b_{12}^2 \\&\quad + 51250 a_{11} \mu ^2 b_{12}^2 -153750 b_{02} \mu ^2 b_{12}^2;\\ f_2&=456 a_{11}^3 - 1154 a_{11}^2 b_{02} + 87 a_{11} b_{02}^2 + 563 b_{02}^3 \\&\quad + 650 a_{11} b_{12} -1950 b_{02} b_{12};\\ f_3&=8 a_{11}^3 - 22 a_{11}^2 b_{02} + 11 a_{11} b_{02}^2 - b_{02}^3+ 10 a_{11} b_{12} \\&\quad -30 b_{02} b_{12};\\ f_4&=6867072 a_{11}^9 - 34328544 a_{11}^8 b_{02} + 60640928 a_{11}^7 b_{02}^2 \\&\quad -107964696 a_{11}^6 b_{02}^3+ 218203332 a_{11}^5 b_{02}^4 \\&\quad -200771496 a_{11}^4 b_{02}^5+ 40153167 a_{11}^3 b_{02}^6\\&\quad + 6353871 a_{11}^2 b_{02}^7 \\&\quad +11243353 a_{11} b_{02}^8 {-} 5166051 b_{02}^9 {+} 35008800 a_{11}^7 b_{12} \\&\quad -148154800 a_{11}^6 b_{02} b_{12} + 229543200 a_{11}^5 b_{02}^2 b_{12}\\&\quad -402053500 a_{11}^4 b_{02}^3 b_{12} + 643866750 a_{11}^3 b_{02}^4 b_{12} \\&\quad -401462650 a_{11}^2 b_{02}^5 b_{12} + 54228900 a_{11} b_{02}^6 b_{12} \\&\quad +12764400 b_{02}^7 b_{12} + 52100000 a_{11}^5 b_{12}^2 \\&\quad -192250000 a_{11}^4 b_{02} b_{12}^2 + 362750000 a_{11}^3 b_{02}^2 b_{12}^2\\&\quad -550250000 a_{11}^2 b_{02}^3 b_{12}^2 + 515843750 a_{11} b_{02}^4 b_{12}^2\\&\quad -126018750 b_{02}^5 b_{12}^2 + 11500000 a_{11}^3 b_{12}^3 \\&\quad -25375000 a_{11}^2 b_{02} b_{12}^3+ 230812500 a_{11} b_{02}^2 b_{12}^3 \\&\quad -305812500 b_{02}^3 b_{12}^3 - 18750000 a_{11} b_{12}^4\\&\quad + 56250000 b_{02} b_{12}^4;\\ f_5&=65616 a_{11}^5 - 189740 a_{11}^4 b_{02} + 77940 a_{11}^3 b_{02}^2 \\&\quad +84055 a_{11}^2 b_{02}^3- 51270 a_{11} b_{02}^4+ 4687 b_{02}^5 \\&\quad +189500 a_{11}^3 b_{12} - 553000 a_{11}^2 b_{02} b_{12} \\&\quad + 137125 a_{11} b_{02}^2 b_{12} +130375 b_{02}^3 b_{12} \\&\quad + 133750 a_{11} b_{12}^2 - 401250 b_{02} b_{12};\\ f_7&=2832 a_{11}^5 - 45980 a_{11}^4 b_{02} \\&\quad + 97380 a_{11}^3 b_{02}^2-43265 a_{11}^2 b_{02}^3 \\&\quad - 2040 a_{11} b_{02}^4+ 2449 b_{02}^5+ 51500 a_{11}^3 b_{12} \\&\quad -196000 a_{11}^2 b_{02} b_{12} \\&\quad + 153625 a_{11} b_{02}^2 b_{12}- 6125 b_{02}^3 b_{12}+73750 a_{11} b_{12}^2\\&\quad - 221250 b_{02} b_{12}^2;\\ f_8&=24864 a_{11}^5 - 65960 a_{11}^4 b_{02} + 14760 a_{11}^3 b_{02}^2 \\&\quad +39220 a_{11}^2 b_{02}^3 - 19455 a_{11} b_{02}^4 + 1423 b_{02}^5 \\&\quad + 65000 a_{11}^3 b_{12} -182500 a_{11}^2 b_{02} b_{12} \\&\quad + 28750 a_{11} b_{02}^2 b_{12}\\&\quad + 51250 b_{02}^3 b_{12}+40000 a_{11} b_{12}^2 - 120000 b_{02} b_{12}^2.\\ \end{aligned}$$

The expressions of \(f_6\) and \(f_9\) are too long to be given here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Li, S. Integrability and limit cycles in cubic Kukles systems with a nilpotent singular point. Nonlinear Dyn 96, 553–563 (2019). https://doi.org/10.1007/s11071-019-04805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04805-0

Keywords

Navigation