Skip to main content
Log in

A virtual experiment for partial space elevator using a novel high-fidelity FE model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper developed a high-fidelity virtual experiment for a partial space elevator using nodal position finite element method with arbitrary Lagrangian–Eulerian description. The new method is designed to test the effectiveness of the optimal control strategies derived from a simplified two-piece dumbbell model for the orbital transfer of a partial space elevator. In the current work, the partial space elevator is modeled by the nodal position finite element method with arbitrary Lagrangian–Eulerian description. A novel technique is introduced to describe the movement of the climber along the tether by variable-length elements. The optimal trajectory of the climber’s velocity is derived from the optimal control and then is input to the finite element model to conduct a virtual experiment. The dynamic responses of the elevator resulted from the newly proposed finite element approach and the widely used simple approach are in good agreement. It shows the newly developed nodal position finite element method with arbitrary Lagrangian–Eulerian description is high fidelity, which can provide an effective virtual experimental environment to verify the effectiveness of libration control strategies based on the simplified two-piece dumbbell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mirsa, A.K., Amier, Z., Modi, V.J.: Attitude dynamics of three-body tethered systems. Acta Astronaut. 17(10), 1059–1068 (1988)

    Article  MATH  Google Scholar 

  2. Lorenzini, E.C., Cosmo, M., Vetrella, S., Moccia, A.: Dynamics and control of the tether elevator/crawler system. J. Guid. Control Dyn. 12(3), 404–411 (1989)

    Article  Google Scholar 

  3. Woo, P., Misra, A.K.: Dynamics of a partial space elevator with multiple climbers. Acta Astronaut. 67(7–8), 753–763 (2010)

    Article  Google Scholar 

  4. Aslanov, V.S., Ledkov, A.S.: Dynamics of Tethered Satellite Systems. Woodhead Publishing, Cambridge (2012)

    Book  Google Scholar 

  5. Kojima, H., Fukatsu, K., Trivailo, P.M.: Mission-function control of tethered satellite/climber system. Acta Astronaut. 106, 24–32 (2015)

    Article  Google Scholar 

  6. Anderson, L.A., Haddock, M.H.: Tethered elevator design for space station. J. Spacecr. Rockets 29(2), 233–238 (1992)

    Article  Google Scholar 

  7. Shi, G., Zhu, Z., Zhu, Z.H.: Libration suppression of tethered space system with a moving climber in circular orbit. Nonlinear Dyn. 91(2), 923–937 (2017)

    Article  Google Scholar 

  8. Xu, M., Zhu, J.-M., Tan, T., Xu, S.-J.: Equilibrium configurations of the tethered three-body formation system and their nonlinear dynamics. Acta Mech. Sin. 28(6), 1668–1677 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jung, W., Mazzoleni, A.P., Chung, J.: Dynamic analysis of a tethered satellite system with a moving mass. Nonlinear Dyn. 75(1–2), 267–281 (2013)

    MathSciNet  Google Scholar 

  10. Fujii, H., Ishijima, S.: Mission function control for deployment and retrieval of a subsatellite. J. Guid. Control Dyn. 12(2), 243–247 (1989)

    Article  Google Scholar 

  11. Williams, P., Ockels, W.: Climber motion optimization for the tethered space elevator. Acta Astronaut. 66(9–10), 1458–1467 (2010)

    Article  Google Scholar 

  12. Zhong, R., Zhu, Z.H.: Optimal control of nanosatellite fast deorbit using electrodynamic tether. J. Guid. Control Dyn. 37(4), 1182–1194 (2014)

    Article  Google Scholar 

  13. Wen, H., Zhu, Z.H., Jin, D., Hu, H.: Tension control of space tether via online quasi-linearization iterations. Adv. Space Res. 57(3), 754–763 (2016)

    Article  Google Scholar 

  14. Zhong, R., Zhu, Z.H.: Timescale separate optimal control of tethered space-tug systems for space-debris removal. J. Guid. Control Dyn. 39(11), 2540–2545 (2016)

    Article  Google Scholar 

  15. Chen, T., Wen, H., Hu, H., Jin, D.: Quasi-time-optimal controller design for a rigid-flexible multibody system via absolute coordinate-based formulation. Nonlinear Dyn. 88(1), 623–633 (2016)

    Article  Google Scholar 

  16. Steindl, A., Troger, H.: Optimal control of deployment of a tethered subsatellite. Nonlinear Dyn. 31, 257–274 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fujii, H.A., Watanabe, T., Kusagaya, T., Sato, D., Ohta, M.: Dynamics of a flexible space tether equipped with a crawler mass. J. Guid. Control Dyn. 31(2), 436–440 (2008)

    Article  Google Scholar 

  18. Williams, P.: Dynamic multibody modeling for tethered space elevators. Acta Astronaut. 65(3–4), 399–422 (2009)

    Article  Google Scholar 

  19. Du, J., Cui, C., Bao, H., Qiu, Y.: Dynamic analysis of cable-driven parallel manipulators using a variable length finite element. J. Comput. Nonlinear Dyn. 10(1), 011013 (2014)

    Article  Google Scholar 

  20. Li, G.Q., Zhu, Z.H.: Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration. Celest. Mech. Dyn. Astron. 123(4), 363–386 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, X., Xu, M., Zhong, R.: Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation. Acta Astronaut. 139, 266–277 (2017)

    Article  Google Scholar 

  22. Hong, D., Ren, G.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong, D., Tang, J., Ren, G.: Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation. J. Fluids Struct. 27(8), 1137–1148 (2011)

    Article  Google Scholar 

  24. Tang, J.L., Ren, G.X., Zhu, W.D., Ren, H.: Dynamics of variable-length tethers with application to tethered satellite deployment. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3411–3424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng, Y., Wei, Y., Zhou, M.: Efficient modeling of cable-pulley system with friction based on arbitrary-Lagrangian–Eulerian approach. Appl. Math. Mech. 38(12), 1785–1802 (2017)

    Article  MathSciNet  Google Scholar 

  26. Kumar, K.D.: Review on dynamics and control of nonelectrodynamic tethered satellite systems. J. Spacecr. Rockets 43(4), 705–720 (2006)

    Article  Google Scholar 

  27. Sun, G., Zhu, Z.H.: Fractional order tension control for stable and fast tethered satellite retrieval. Acta Astronaut. 104(1), 304–312 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Discovery Grant (RGPIN-2018-05991) of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the FAST grant of Canadian Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng H. Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Li, G., Zhu, Z. et al. A virtual experiment for partial space elevator using a novel high-fidelity FE model. Nonlinear Dyn 95, 2717–2727 (2019). https://doi.org/10.1007/s11071-018-4718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4718-8

Keywords

Navigation