Skip to main content

Advertisement

Log in

Stability and nonlinear dynamic analysis of gas-lubricated system with elastomer suspension

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the dynamic behavior of a rigid rotor supported by a pair of self-acting gas-lubricated bearings which is used in a turbo-expander, the key equipment in a large-scale cryogenic system. In order to restrict the vibration of the rotor relative to bearings, elastomers are mounted between bearings and shell. A finite difference method has been employed to solve the Reynolds equation in time-dependent states. The center orbits of the rotor are got by solving the motion equations. The system state trajectory, Poincare maps, logarithmic spectra maps and bifurcation diagrams are used to analyze the dynamic behavior of the system. The effect of the elastomer suspension to absorb the vibration is verified by comparison with the system with rigid suspension. A set of mass values, damping exponent values and stiffness of elastomer are calculated and compared in this paper. The results show that the rotor center loses its regular behavior gradually with the increase in the rotor mass. The square damping exponent model of the elastomer shows more stability than linear damping suspension model, and the quadratic damping exponent model has a similar motion behavior compared with a linear model. A suitable stiffness of the elastomer is important to the stability of the system. The elastomer with a low stiffness may cause the large amplitude of the vibration, and the system may lose its regular behavior when the stiffness is large enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(A_{\mathrm{r}x},A_{\mathrm{r}y} \) :

Dimensionless horizontal and vertical acceleration of rotor

\(A_{\mathrm{b}x},A_{\mathrm{b}y} \) :

Dimensionless horizontal and vertical acceleration of bearing

Cr:

Average radial clearance between shaft and bearing (m)

D :

Diameter of the rotor (m)

\(e_{ub} \) :

Mass eccentricity of the rotor (m)

\(f_{\mathrm{g}x},f_{\mathrm{g}y} \) :

Supporting force components in horizontal and vertical directions (N)

\(f_{\mathrm{e}x},f_{\mathrm{e}y}\) :

External force components in horizontal and vertical directions (N)

\(f_\mathrm{d} \) :

Damping force of elastomer (N)

\(F_{\mathrm{g}x},F_{\mathrm{g}y} \) :

Dimensionless supporting force components in horizontal and vertical directions

F :

Defined as \(\sqrt{F_{\mathrm{g}x}^2 + F_{\mathrm{g}y}^2} \)

\(\varphi \) :

Defined as \(\tan ^{-1}(F_{\mathrm{e}x} /F_{\mathrm{e}y} )\)

\(F_{\mathrm{e}x}, F_{\mathrm{e}y} \) :

Dimensionless external force components in horizontal and vertical directions

H :

Dimensionless film thickness between shaft and bearing

h :

Film thickness (m)

kc :

Stiffness (N/m) and damping (N s/m) of elastic damper

\(\gamma \) :

Damping exponent

KC :

Dimensionless stiffness and damping of the damper

\(\xi \) :

Dimensionless damping coefficient of elastomer \(\xi =c/{2\sqrt{km_\mathrm{b} }}\)

L :

Length of the journal bearing (m)

\(m_\mathrm{r} \) :

One-half mass of rotor (kg)

\(m_\mathrm{b} \) :

Mass of bearing (kg)

\(M_\mathrm{r},M_\mathrm{b} \) :

Dimensionless mass of rotor and bearing

p :

Pressure \((\hbox {N}{/}\hbox {m}^{2})\)

P :

Dimensionless pressure

\(P_\mathrm{a} \) :

Atmosphere pressure \((\hbox {N}{/}\hbox {m}^{2})\)

R :

Radius of the shaft (m)

t :

Time (s)

\(\tau \) :

Dimensionless time, \(\varpi t\)

U :

Peripheral speed of the rotor (m/s)

\(\mu \) :

Fluid kinematic viscosity (Pa s)

u :

Deflection of the elastomer

\(\dot{u}\) :

Defined as \({\mathrm{d}u}{/}{\mathrm{d}t}\)

\(V_{\mathrm{r}x}, V_{\mathrm{r}y} \) :

Dimensionless horizontal and vertical velocity of the rotor

\(V_{\mathrm{b}x}, V_{\mathrm{b}y} \) :

Dimensionless horizontal and vertical velocity of bearing

\(\varpi \) :

Angular speed of the rotor (rad/s)

xy :

Horizontal and vertical coordinates (m)

XYZ :

Dimensionless displacement in Cartesian coordinate system

\(X_\mathrm{r},Y_\mathrm{r} \) :

Dimensionless horizontal and vertical displacement of the rotor

\(X_\mathrm{b} ,Y_\mathrm{b} \) :

Dimensionless horizontal and vertical displacement of bearing

\(X_\mathrm{rel} ,Y_\mathrm{rel} \) :

Dimensionless horizontal and vertical displacement of the rotor relative to the beating. (\(X_\mathrm{rel} =X_\mathrm{r} -X_\mathrm{b} ;Y_\mathrm{rel} =Y_\mathrm{r} -Y_\mathrm{b} )\)

\(\Lambda \) :

Bearing number

\(\varepsilon \) :

Eccentricity ratio of the system

\(\theta , \eta \) :

Dimensionless coordinate in circumferential and axial directions, respectively

n :

Time level

ij :

Grid location in circumferential and axial directions

b :

Parameters of bearing

r :

Parameters of rotor

0:

Initial parameter

References

  1. Rashidi, R., Karami Mohammadi, A., Bakhtiari Nejad, F.: Bifurcation and nonlinear dynamic analysis of a rigid rotor supported by two-lobe noncircular gas-lubricated journal bearing system. Nonlinear Dyn. 61(4), 783–802 (2010)

    Article  Google Scholar 

  2. Rashidi, R., Karami Mohammadi, A., Bakhtiari Nejad, F.: Preload effect on nonlinear dynamic behavior of a rigid rotor supported by noncircular gas-lubricated journal bearing systems. Nonlinear Dyn. 60(3), 231–253 (2010)

    Article  Google Scholar 

  3. Gross, W.A., Zachmanaglou, E.C.: Perturbation solutions for gas-lubricating films. ASME J. Basic Eng. 83, 139–144 (1961)

    Article  Google Scholar 

  4. Castelli, V., Elrod, H.G.: Solution of the stability problem for 360 deg self-acting, gas-lubricated bearings. ASME J. Basic Eng. 87, 199–212 (1965)

    Article  Google Scholar 

  5. Ehrich, F.F.: Subharmonic vibration of rotors in bearing clearance. In: Mechanical Engineering, p. 56. ASME-American Society of Mechanical Engineers, New York (1966)

  6. Bently, D.E.: Forced sub-rotative speed dynamic action of rotating machinery. In: Mechanical Engineering, p. 60. ASME-ASME-American Society of Mechanical Engineers, New York (1974)

  7. Holmes, A.G., Ettles, C., Mayes, I.W.: The aperiodic behaviour of a rigid shaft in short journal bearings. Int. J. Numer. Methods Eng. 12(4), 695–702 (1978)

    Article  Google Scholar 

  8. Kim, Y.B., Noah, S.T.: Bifurcation analysis for a modified Jeffcott rotor with bearing clearances. Nonlinear Dyn. 1(3), 221–241 (1990)

    Article  Google Scholar 

  9. Wang, C., Chen, C.: Bifurcation analysis of self-acting gas journal bearings. Trans. Am. Soc. Mech. Eng. J. Tribol. 123(4), 755–767 (2001)

    Google Scholar 

  10. Wang, J., Wang, C.: Nonlinear dynamic and bifurcation analysis of short aerodynamic journal bearings. Tribol. Int. 38(8), 740–748 (2005)

    Article  Google Scholar 

  11. Wang, C., Jang, M., Yeh, Y.: Bifurcation and nonlinear dynamic analysis of a flexible rotor supported by relative short gas journal bearings. Chaos Solitons Fractals 32(2), 566–582 (2007)

    Article  Google Scholar 

  12. Wang, C.: Theoretical and nonlinear behavior analysis of a flexible rotor supported by a relative short herringbone-grooved gas journal-bearing system. Phys. D Nonlinear Phenom. 237(18), 2282–2295 (2008)

    Article  MathSciNet  Google Scholar 

  13. Wang, C., Yau, H.: Theoretical analysis of high speed spindle air bearings by a hybrid numerical method. Appl. Math. Comput. 217(5), 2084–2096 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Yang, P., Zhu, K., Wang, X.: On the non-linear stability of self-acting gas journal bearings. Tribol. Int. 42(1), 71–76 (2009)

    Article  Google Scholar 

  15. Zhang, G., Sun, Y., Liu, Z., Zhang, M., Yan, J.: Dynamic characteristics of self-acting gas bearing-flexible rotor coupling system based on the forecasting orbit method. Nonlinear Dyn. 69(1), 341–355 (2012)

    Article  Google Scholar 

  16. Zhang, X., Wang, X., Zhang, Y.: Non-linear dynamic analysis of the ultra-short micro gas journal bearing-rotor systems considering viscous friction effects. Nonlinear Dyn. 73(1–2), 751–765 (2013)

    Google Scholar 

  17. Abbasi, A., Khadem, S.E., Bab, S., Friswell, M.I.: Vibration control of a rotor supported by journal bearings and an asymmetric high-static low-dynamic stiffness suspension. Nonlinear Dyn. 85(1), 525–545 (2016)

    Article  Google Scholar 

  18. Pekcan, G., Mander, J.B., Chen, S.S.: Fundamental considerations for the design of non-linear viscous dampers. Earthq. Eng. Struct. D 28(11), 1405–1425 (1999)

    Article  Google Scholar 

  19. Terenzi, G.: Dynamics of SDOF systems with nonlinear viscous damping. J. Eng. Mech. 125(8), 956–963 (1999)

    Article  Google Scholar 

  20. Trueba, J.L., Rams, J., Sanjuán, M.A.: Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators. Int. J. Bifurc. Chaos 10(09), 2257–2267 (2000)

    Article  MathSciNet  Google Scholar 

  21. Rüdinger, F.: Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation. J. Eng. Mech. 132(1), 46–53 (2006)

    Article  Google Scholar 

  22. Sharma, A., Patidar, V., Purohit, G., Sud, K.K.: Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping. Commun. Nonlinear Sci. 17(6), 2254–2269 (2012)

    Article  MathSciNet  Google Scholar 

  23. Yan, S., Dowell, E.H., Lin, B.: Effects of nonlinear damping suspension on nonperiodic motions of a flexible rotor in journal bearings. Nonlinear Dyn. 78(2), 1435–1450 (2014)

    Article  Google Scholar 

  24. Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.: Structural control: past, present, and future. J. Eng. Mech. 123(9), 897–971 (1997)

    Article  Google Scholar 

  25. Brown, R.D., Addison, P., Chan, A.: Chaos in the unbalance response of journal bearings. Nonlinear Dyn. 5(4), 421–432 (1994)

    Article  Google Scholar 

  26. Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10(3), 251–269 (1996)

    Article  Google Scholar 

  27. Malik, M., Bert, C.W.: Differential quadrature solutions for steady-state incompressible and compressible lubrication problems. J. Tribol. 116(2), 296–302 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the fund of National Research and Development Project for Key Scientific Instruments, ZDYZ2014-1; and the fund of the State Key Laboratory of Technologies in Space Cryogenic Propellants, SKLTSCP1604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, Q., Yang, S.Q. et al. Stability and nonlinear dynamic analysis of gas-lubricated system with elastomer suspension. Nonlinear Dyn 94, 2161–2176 (2018). https://doi.org/10.1007/s11071-018-4481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4481-x

Keywords

Navigation