Skip to main content
Log in

Dynamic stabilization of an asymmetric nonlinear bubble oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present study focuses on the possibilities of dynamic stabilization of a gas–vapour bubble below Blake’s critical threshold (Blake in the onset of cavitation in liquids, 1949) by harmonic forcing. In bubble dynamics, in terms of the ambient pressure, this threshold is known as a special limit where bubbles tend to grow infinity due to the non-strictly dissipative nature of the governing equations. The employed model is the harmonically excited Rayleigh–Plesset equation that is a nonlinear, second-order ordinary differential equation. Partial results have already been published in the literature (Hegedűs in Ultrasonics 54(4):1113, 2014), Hegedűs in Phys Lett A 380(9–10):1012, 2016). Throughout this paper, however, the investigated parameter space is significantly extended: excitation properties (pressure amplitude and frequency), ambient pressure, bubble size and liquid viscosity (amount of dissipation). The numerical results have indicated that domains where stable oscillations exist can always be found below Blake’s threshold. However, from application point of view, it is mandatory to raise the dissipation rate of the system to significantly increase the extent of these domains making the process of dynamic stabilization robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blake, F.G.: The onset of cavitation in liquids. Tech. Rep. 12, Acoust. Res. Lab., Harvard Univ. (1949)

  2. Hegedűs, F.: Stable bubble oscillations beyond Blake’s critical threshold. Ultrasonics 54(4), 1113 (2014)

    Article  Google Scholar 

  3. Hegedűs, F.: Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake’s critical threshold: infinite sequence of two-sided Farey ordering trees. Phys. Lett. A 380(9–10), 1012 (2016)

    Article  Google Scholar 

  4. Butikov, E.I.: On the dynamic stabilization of an inverted pendulum. Am. J. Phys. 69(7), 755 (2001)

    Article  Google Scholar 

  5. Wolf, G.H.: The dynamic stabilization of the Rayleigh-Taylor instability and the corresponding dynamic equilibrium. Z. Phys. A-Hadron. nucl. 227(3), 291 (1969)

    Article  Google Scholar 

  6. Ivanov, A.A., Chuvatin, A.S.: Stability of a viscous fluid in an oscillating gravitational field. Phys. Rev. E 63(3), 036303 (2001)

    Article  Google Scholar 

  7. Berge, G.: Equilibrium and stability of MHD-fluids by dynamic techniques. Nucl. Fusion 12(1), 99 (1972)

    Article  Google Scholar 

  8. Li, S.C., Ye, C.: Dynamic stabilization of a coupled ultracold atom-molecule system. Phys. Rev. E 92(6), 062147 (2015)

    Article  Google Scholar 

  9. Ma, J.T.S., Wang, P.K.C.: Effect of initial air content on the dynamics of bubbles in liquids. IBM J. Res. Dev. 6(4), 472 (1962)

    Article  Google Scholar 

  10. Chang, H.C., Chen, L.H.: Growth of a gas bubble in a viscous fluid. Phys. Fluids 29(11), 3530 (1986)

    Article  Google Scholar 

  11. Sanders, J.A.: Melnikov’s method and averaging. Celest. Mech. Dyn. Astron. 28(1), 171 (1982)

    Article  MathSciNet  Google Scholar 

  12. Feng, Z.C., Leal, L.G.: Nonlinear bubble dynamics. Ann. Rev. Fluid Mech. 29(1), 201 (1997)

    Article  MathSciNet  Google Scholar 

  13. Hao, Y., Prosperetti, A.: The dynamics of vapor bubbles in acoustic pressure fields. Phys. Fluids 11(8), 2008 (1999)

    Article  MathSciNet  Google Scholar 

  14. Gumerov, N.A.: Dynamics of vapor bubbles with nonequilibrium phase transitions in isotropic acoustic fields. Phys. Fluids 12(1), 71 (2000)

    Article  Google Scholar 

  15. Klapcsik, K., Hegedűs, F.: The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble. Chaos Solitons Fract. 104, 198 (2017)

    Article  Google Scholar 

  16. Haar, L., Gallagher, J.S., Kell, G.S.: NBS/NRC Wasserdampftafeln. Springer, Berlin (1988)

    Book  Google Scholar 

  17. Cheng, N.S.: Formula for the viscosity of a glycerol-water mixture. Ind. Eng. Chem. Res. 47(9), 3285 (2008)

    Article  Google Scholar 

  18. Varga, R., Hegedűs, F.: Classification of the bifurcation structure of a periodically driven gas bubble. Nonlinear Dyn. 86(2), 1239 (2016)

    Article  Google Scholar 

  19. Cash, J.R., Karp, A.H.: A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Softw. 16(3), 201 (1990)

    Article  MathSciNet  Google Scholar 

  20. Niemeyer, K.E., Sung, C.J.: Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs. J. Comput. Phys. 256, 854 (2014)

    Article  MathSciNet  Google Scholar 

  21. Sewerin, F., Rigopoulos, S.: A methodology for the integration of stiff chemical kinetics on GPUs. Combust. Flame 162(4), 1375 (2015)

    Article  Google Scholar 

  22. Wiggins, S.: Global bifurcations and chaos: analytical methods. Springer, New York (1988)

    Book  Google Scholar 

  23. Doedel, E.J., Oldeman, B.E., Champneys, A.R., Dercole, F., Fairgrieve, T.F., Kuznetsov, Y.A., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C.: AUTO-07P: continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal (2012)

    Google Scholar 

  24. Fyrillas, M.M., Szeri, A.J.: Dissolution or growth of soluble spherical oscillating bubbles. J. Fluid Mech. 277, 381 (1994)

    Article  Google Scholar 

  25. Hős, C., Champneys, A.R., Kullmann, L.: Bifurcation analysis of surge and rotating stall in the Moore–Greitzer compression system. IMA J. Appl. Math. 68(2), 205 (2003)

    Article  MathSciNet  Google Scholar 

  26. Lauterborn, W., Kurz, T.: Physics of bubble oscillations. Rep. Prog. Phys. 73(10), 106501 (2010)

    Article  Google Scholar 

  27. Hős, C., Champneys, A.R.: Grazing bifurcations and chatter in a pressure relief valve model. Physica D 241(22), 2068 (2012)

    Article  MathSciNet  Google Scholar 

  28. Hős, C.J., Champneys, A.R., Paul, K., McNeely, M.: Dynamic behaviour of direct spring loaded pressure relief valves in gas service: II reduced order modelling. J. Loss Prevent. Proc. 36, 1 (2015)

    Article  Google Scholar 

  29. Hegedűs, F., Klapcsik, K.: The effect of high viscosity on the collapse-like chaotic and regular periodic oscillations of a harmonically excited gas bubble. Ultrason. Sonochem. 27, 153 (2015)

    Article  Google Scholar 

  30. Krauskopf, B., Osinga, H.: Growing 1D and quasi-2D unstable manifolds of maps. J. Comput. Phys. 146(1), 404 (1998)

    Article  MathSciNet  Google Scholar 

  31. McDonald, S.W., Grebogi, C., Ott, E., Yorke, J.A.: Fractal basin boundaries. Physica D 17(2), 125 (1985)

    Article  MathSciNet  Google Scholar 

  32. Lai, Y.C., Tél, T.: Transient chaos. Springer, New York (2010)

    MATH  Google Scholar 

  33. Hegedűs, F., Koch, S., Garen, W., Pandula, Z., Paál, G., Kullmann, L., Teubner, U.: The effect of high viscosity on compressible and incompressible Rayleigh–Plesset-type bubble models. Int. J. Heat Fluid Flow 42, 200 (2013)

    Article  Google Scholar 

  34. Brennen, C.E.: Cavitation and bubble dynamics. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  35. Marston, P.L.: Evaporation-condensation resonance frequency of oscillating vapor bubbles. J. Acoust. Soc. Am. 66(5), 1516 (1979)

    Article  MathSciNet  Google Scholar 

  36. Wang, T.: Rectified heat transfer. J. Acoust. Soc. Am. 56(4), 1131 (1974)

    Article  Google Scholar 

  37. Finch, R.D., Neppiras, E.A.: Vapor bubble dynamics. J. Acoust. Soc. Am. 53(5), 1402 (1973)

    Article  Google Scholar 

  38. Marston, P.L., Greene, D.B.: Stable microscopic bubbles in helium I and evaporation-condensation resonance. J. Acoust. Soc. Am. 64(1), 319 (1978)

    Article  Google Scholar 

  39. Akulichev, V.A.: Acoustic cavitation in low-temperature liquids. Ultrasonics 24(1), 8 (1986)

    Article  Google Scholar 

  40. Mettin, R., Cairós, C., Troia, A.: Sonochemistry and bubble dynamics. Ultrason. Sonochem. 25, 24 (2015)

    Article  Google Scholar 

  41. Pokhrel, N., Vabbina, P.K., Pala, N.: Sonochemistry: science and engineering. Ultrason. Sonochem. 29, 104 (2016)

    Article  Google Scholar 

  42. Leighton, T.G.: The acoustic bubble. Academic press, London (2012)

    Google Scholar 

  43. Stricker, L., Lohse, D.: Radical production inside an acoustically driven microbubble. Ultrason. Sonochem. 21(1), 336 (2014)

    Article  Google Scholar 

  44. Merouani, S., Hamdaoui, O., Rezgui, Y., Guemini, M.: Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Ultrason. Sonochem. 22, 41 (2015)

    Article  Google Scholar 

  45. Pradhan, A.A., Gogate, P.R.: Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry. J. Hazard. Mater. 173(1), 517 (2010)

    Article  Google Scholar 

  46. Kanthale, P.M., Gogate, P.R., Pandit, A.B.: Modeling aspects of dual frequency sonochemical reactors. Chem. Eng. J. 127(1), 71 (2007)

    Article  Google Scholar 

  47. Yasui, K., Tuziuti, T., Iida, Y.: Optimum bubble temperature for the sonochemical production of oxidants. Ultrasonics 42(1), 579 (2004)

    Article  Google Scholar 

  48. Yasui, K., Tuziuti, T., Sivakumar, M., Iida, Y.: Theoretical study of single-bubble sonochemistry. J. Chem. Phys. 122(22), 224706 (2005)

    Article  Google Scholar 

  49. Yasui, K., Tuziuti, T., Kozuka, T., Towata, A., Iida, Y.: Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. J. Chem. Phys. 127(15), 154502 (2007)

    Article  Google Scholar 

  50. Sutkar, V.S., Gogate, P.R.: Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters. Chem. Eng. J. 155(1), 26 (2009)

    Article  Google Scholar 

  51. Brotchie, A., Mettin, R., Grieser, F., Ashokkumar, M.: Cavitation activation by dual-frequency ultrasound and shock waves. Phys. Chem. Chem. Phys. 11, 10029 (2009)

    Article  Google Scholar 

  52. Khanna, S., Chakma, S., Moholkar, V.S.: Phase diagrams for dual frequency sonic processors using organic liquid medium. Chem. Eng. Sci. 100, 137 (2013)

    Article  Google Scholar 

  53. Zhang, Y., Zhang, Y., Li, S.: Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation. Ultrason. Sonochem. 35, 431 (2017)

    Article  Google Scholar 

  54. Guédra, M., Inserra, C., Gilles, B.: Accompanying the frequency shift of the nonlinear resonance of a gas bubble using a dual-frequency excitation. Ultrason. Sonochem. 38, 298 (2017)

    Article  Google Scholar 

  55. Zhang, Y., Zhang, Y.: Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation. Ultrason. Sonochem. 40(Part B), 151 (2018)

    Article  Google Scholar 

  56. Ueda, Y.: Randomly transitional phenomena in the system governed by Duffing’s equation. J. Stat. Phys. 20(2), 181 (1979)

    Article  MathSciNet  Google Scholar 

  57. Beiersdorfer, P., Wersinger, J.M., Treve, Y.: Topology of the invariant manifolds of period-doubling attractors for some forced nonlinear oscillators. Phys. Lett. A 96(6), 269 (1983)

    Article  MathSciNet  Google Scholar 

  58. Parlitz, U., Lauterborn, W.: Superstructure in the bifurcation set of the Duffing equation \(\ddot{x} + d \dot{x} + x + x^3 = f cos(\omega t)\). Phys. Lett. A 107(8), 351 (1985)

    Article  MathSciNet  Google Scholar 

  59. Kao, Y.H., Huang, J.C., Gou, Y.S.: Persistent properties of crises in a Duffing oscillator. Phys. Rev. A 35(12), 5228 (1987)

    Article  Google Scholar 

  60. Englisch, V., Lauterborn, W.: Regular window structure of a double-well Duffing oscillator. Phys. Rev. A 44(2), 916 (1991)

    Article  MathSciNet  Google Scholar 

  61. Wang, C.S., Kao, Y.H., Huang, J.C., Gou, Y.S.: Potential dependence of the bifurcation structure in generalized Duffing oscillators. Phys. Rev. A 45(6), 3471 (1992)

    Article  Google Scholar 

  62. Englisch, V., Lauterborn, W.: The winding-number limit of period-doubling cascades derived as Farey-fraction. Int. J. Bifurcat. Chaos 4(4), 999 (1994)

    Article  MathSciNet  Google Scholar 

  63. Kozłowski, J., Parlitz, U., Lauterborn, W.: Bifurcation analysis of two coupled periodically driven Duffing oscillators. Phys. Rev. E 51(3), 1861 (1995)

    Article  Google Scholar 

  64. Gilmore, R., McCallum, J.W.L.: Structure in the bifurcation diagram of the Duffing oscillator. Phys. Rev. E 51, 935 (1995)

    Article  MathSciNet  Google Scholar 

  65. Kim, S.Y.: Bifurcation structure of the double-well Duffing oscillator. Int. J. Mod. Phys. B 14(17), 1801 (2000)

    Article  Google Scholar 

  66. Lauterborn, W., Parlitz, U.: Methods of chaos physics and their application to acoustics. J. Acoust. Soc. Am. 84(6), 1975 (1988)

    Article  MathSciNet  Google Scholar 

  67. Kurz, T., Lauterborn, W.: Bifurcation structure of the Toda oscillator. Phys. Rev. A 37, 1029 (1988)

    Article  MathSciNet  Google Scholar 

  68. Goswami, B.K.: The interaction between period 1 and period 2 branches and the recurrence of the bifurcation structures in the periodically forced laser rate equations. Opt. Commun. 122(4), 189 (1996)

    Article  Google Scholar 

  69. Goswami, B.K.: Self-similarity in the bifurcation structure involving period tripling, and a suggested generalization to period n-tupling. Phys. Lett. A 245(1–2), 97 (1998)

    Article  Google Scholar 

  70. Parlitz, U., Lauterborn, W.: Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator. Phys. Rev. A 36(3), 1428 (1987)

    Article  Google Scholar 

  71. Knop, W., Lauterborn, W.: Bifurcation structure of the classical Morse oscillator. J. Chem. Phys. 93(6), 3950 (1990)

    Article  MathSciNet  Google Scholar 

  72. Lauterborn, W.: Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 59(2), 283 (1976)

    Article  MathSciNet  Google Scholar 

  73. Parlitz, U., Englisch, V., Scheffczyk, C., Lauterborn, W.: Bifurcation structure of bubble oscillators. J. Acoust. Soc. Am. 88(2), 1061 (1990)

    Article  MathSciNet  Google Scholar 

  74. Simon, G., Cvitanovic, P., Levinsen, M.T., Csabai, I., Horváth, A.: Periodic orbit theory applied to a chaotically oscillating gas bubble in water. Nonlinearity 15(1), 25 (2002)

    Article  MathSciNet  Google Scholar 

  75. Behnia, S., Sojahrood, A.J., Soltanpoor, W., Sarkhosh, L.: Towards classification of the bifurcation structure of a spherical cavitation bubble. Ultrasonics 49(8), 605 (2009)

    Article  Google Scholar 

  76. Behnia, S., Sojahrood, A.J., Soltanpoor, W., Jahanbakhsh, O.: Nonlinear transitions of a spherical cavitation bubble. Chaos Solitons Fract. 41(2), 818 (2009)

    Article  Google Scholar 

  77. Behnia, S., Sojahrood, A.J., Soltanpoor, W., Jahanbakhsh, O.: Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation. Ultrason. Sonochem. 16(4), 502 (2009)

    Article  Google Scholar 

  78. Brujan, E.A.: Bifurcation structure of bubble oscillators in polymer solutions. Acta Acust. United Acust. 95(2), 241 (2009)

    Article  Google Scholar 

  79. Sojahrood, A.J., Kolios, M.C.: Classification of the nonlinear dynamics and bifurcation structure of ultrasound contrast agents excited at higher multiples of their resonance frequency. Phys. Lett. A 376(33), 2222 (2012)

    Article  Google Scholar 

  80. Behnia, S., Mobadersani, F., Yahyavi, M., Rezavand, A.: Chaotic behavior of gas bubble in non-Newtonian fluid: a numerical study. Nonlinear Dyn. 74(3), 559 (2013)

    Article  MathSciNet  Google Scholar 

  81. Sojahrood, A.J., Falou, O., Earl, R., Karshafian, R., Kolios, M.C.: Influence of the pressure-dependent resonance frequency on the bifurcation structure and backscattered pressure of ultrasound contrast agents: a numerical investigation. Nonlinear Dyn. 80(1–2), 889 (2015)

    Article  Google Scholar 

  82. Varga, R., Paál, G.: Numerical investigation of the strength of collapse of a harmonically excited bubble. Chaos Solitons Fract. 76, 56 (2015)

    Article  MathSciNet  Google Scholar 

  83. Parlitz, U., Lauterborn, W.: Resonances and torsion numbers of driven dissipative nonlinear oscillators. Z. Naturforsch. A 41(4), 605 (1986)

    Article  MathSciNet  Google Scholar 

  84. Scheffczyk, C., Parlitz, U., Kurz, T., Knop, W., Lauterborn, W.: Comparison of bifurcation structures of driven dissipative nonlinear oscillators. Phys. Rev. A 43(12), 6495 (1991)

    Article  MathSciNet  Google Scholar 

  85. Parlitz, U.: Common dynamical features of periodically driven strictly dissipative oscillators. Int. J. Bifurc. Chaos 3(3), 703 (1993)

    Article  MathSciNet  Google Scholar 

  86. Englisch, V., Parlitz, U., Lauterborn, W.: Comparison of winding-number sequences for symmetric and asymmetric oscillatory systems. Phys. Rev. E 92(2), 022907 (2015)

    Article  MathSciNet  Google Scholar 

  87. Bonatto, C., Gallas, J.A.C., Ueda, Y.: Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator. Phys. Rev. E 77(2), 026217 (2008)

    Article  Google Scholar 

  88. de Souza, S.L.T., Lima, A.A., Caldas, I.L., Medrano-T, R.O., Guimara̋es-Filho, Z.O.: Self-similarities of periodic structures for a discrete model of a two-gene system. Phys. Lett. A 376(15), 1290 (2012)

    Article  Google Scholar 

  89. Medeiros, E.S., Medrano-T, R.O., Caldas, I.L., de Souza, S.L.T.: Torsion-adding and asymptotic winding number for periodic window sequences. Phys. Lett. A 377(8), 628 (2013)

    Article  MathSciNet  Google Scholar 

  90. Cabeza, C., Briozzo, C.A., Garcia, R., Freire, J.G., Marti, A.C., Gallas, J.A.C.: Periodicity hubs and wide spirals in a two-component autonomous electronic circuit. Chaos Solitons Fract. 52, 59 (2013)

    Article  MathSciNet  Google Scholar 

  91. Medrano-T, R.O., Rocha, R.: The negative side of Chua’s circuit parameter space: stability analysis, period-adding, basin of attraction metamorphoses, and experimental investigation. Int. J. Bifurc. Chaos 24(09), 1430025 (2014)

    Article  Google Scholar 

  92. Rech, P.C.: Period-adding structures in the parameter-space of a driven Josephson junction. Int. J. Bifurc. Chaos 25(12), 1530035 (2015)

    Article  MathSciNet  Google Scholar 

  93. Gallas, J.A.C.: Periodic oscillations of the forced Brusselator. Mod. Phys. Lett. B 29(35–36), 1530018 (2015)

    Article  MathSciNet  Google Scholar 

  94. Field, R.J., Gallas, J.A., Schuldberg, D.: Periodic and chaotic psychological stress variations as predicted by a social support buffered response mode. Commun. Nonlinear Sci. Numer. Simul. 49, 135 (2017)

    Article  Google Scholar 

  95. Manchein, C., da Silva, R.M., Beims, M.W.: Proliferation of stability in phase and parameter spaces of nonlinear systems. Chaos 27(8), 081101 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Hegedűs.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegedűs, F., Kalmár, C. Dynamic stabilization of an asymmetric nonlinear bubble oscillator. Nonlinear Dyn 94, 307–324 (2018). https://doi.org/10.1007/s11071-018-4360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4360-5

Keywords

Navigation