Skip to main content
Log in

Analysis and synthesis of oscillator systems described by a perturbed double-well Duffing equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an investigation of limit cycles in oscillator systems described by a perturbed double-well Duffing equation. The analysis of limit cycles is made by the Melnikov theory. Expressing the solutions of the unperturbed Duffing equation by Jacobi elliptic functions allows us to calculate explicitly the Melnikov function, whereupon the final result is a function involving the complete elliptic integrals. The Melnikov function is analyzed with the aid of the Picard–Fuchs and Riccati equations. It has been proved that the considered oscillator system can have two small hyperbolic limit cycles located symmetrically with respect to the y-axis, or one large hyperbolic limit cycle, or two large hyperbolic limit cycles, or one large limit cycle of multiplicity 2. Moreover, we have obtained the conditions under which each of these limit cycles arises. The present work gives the conditions for the arising of limit cycles around the homoclinic trajectory. In this connection, an alternative approach is proposed for obtaining a series expansion of the Melnikov function near the homoclinic trajectory. This approach uses the series expansion of the complete elliptic integrals as the elliptic modulus tends to 1. It is shown that a jumping phenomenon may occur between limit cycles in the analyzed oscillator system. The conditions for the occurrence of this jumping phenomenon are given. A method for the synthesis of an oscillator system with a preliminary assigned limit cycle is also presented in the article. The obtained analytical results are illustrated and confirmed by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 5th edn. Springer, New York (1997)

    MATH  Google Scholar 

  2. Perko, L.: Differential Equation and Dynamical Systems, 3rd edn. Springer, New York (2001)

    Book  Google Scholar 

  3. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  4. Luo, D., Wang, X., Zhu, D., Han, M.: Bifurcation Theory and Methods of Dynamical Systems. World Scientific, Singapore (1997)

    Book  Google Scholar 

  5. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics, Analytical, Computational, and Experimental Methods. Wiley, Weinheim (2004)

    MATH  Google Scholar 

  6. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Theory of Bifurcations of Dynamical Systems on the Plane. Wiley, New York (1973)

    Google Scholar 

  7. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edn. Springer, New York (1988)

    Google Scholar 

  8. Bautin, N.M., Leontovich, E.E.: Methods and Tools for Qualitative Analysis of Dynamical Systems on the Plane. Nauka, Moscow (1976). (in Russian)

    Google Scholar 

  9. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1995)

    Book  Google Scholar 

  10. Chicone, C.: Ordinary Differential Equations with Applications, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  11. Christopher, C., Li, Ch.: Limit Cycles of Differential Equations. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  12. Han, M., Yu, P.: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles. Springer, London (2012)

    Book  Google Scholar 

  13. Han, M., Zhang, T.: Some bifurcation methods of finding limit cycles. Math. Biosci. Eng. 3, 67–77 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Bonnin, M.: Harmonic balance Melnikov method and nonlinear oscillators under resonant perturbation. Int. J. Circuit Theory Appl. 36, 247–274 (2008)

    Article  Google Scholar 

  15. Bonnin, M.: Existence, number, and stability of limit cycles in weakly dissipative, strongly nonlinear oscillators. Nonlinear Dyn. 62, 321–332 (2010)

    Article  MathSciNet  Google Scholar 

  16. Roussarie, R.: Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem. Springer, Basel (1998)

    Book  Google Scholar 

  17. Li, J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos 13(1), 47–106 (2003)

    Article  MathSciNet  Google Scholar 

  18. Horozov, E.: Perturbations of the spherical pendulum and Abelian integrals. J. Reine Angew. Math. 408, 114–135 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Chow, S.-N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  20. Horozov, E., Iliev, I.D.: On the number of limit cycles in perturbations of quadratic Hamiltonian systems. Proc. Lond. Math. Soc. 69(3), 198–224 (1994)

    Article  MathSciNet  Google Scholar 

  21. Horozov, E., Iliev, I.D.: On saddle-loop bifurcations of limit cycles in perturbations of quadratic Hamiltonian systems. J. Differ. Eqn. 113, 84–105 (1994)

    Article  MathSciNet  Google Scholar 

  22. Dumortier, F., Li, C.: Perturbation from an elliptic Hamiltonian of degree four—IV figure eight-loop. J. Differ. Eqn. 188, 512–554 (2003)

    Article  MathSciNet  Google Scholar 

  23. Zhang, W., Yu, P.: A study of the limit cycles associated with a generalized codimension-3 Lienard oscillator. J. Sound Vib. 231, 145–173 (2000)

    Article  MathSciNet  Google Scholar 

  24. Zhang, W., Yu, P.: Degenerate bifurcation analysis on a parametrically and externally excited mechanical system. Int. J. Bifurc. Chaos 11, 689–709 (2001)

    Article  Google Scholar 

  25. Blows, T.R., Perko, L.M.: Bifurcation of limit cycles from center and separatrix cycles of planar analytic systems. SIAM Rev. 36, 341–376 (1994)

    Article  MathSciNet  Google Scholar 

  26. Chicone, C., Jacobs, M.: Bifurcation of limit cycles from quadratic isochrones. J. Differ. Eqn. 91, 268–326 (1991)

    Article  MathSciNet  Google Scholar 

  27. Savov, V.N., Georgiev, ZhD, Todorov, T.G.: Analysis and synthesis of perturbed Duffing oscillators. Int. J. Circuit Theory Appl. 34, 281–306 (2006)

    Article  Google Scholar 

  28. Georgiev, ZhD: Analysis and synthesis of oscillator systems described by perturbed single well Duffing equations. Nonlinear Dyn. 62, 883–893 (2010)

    Article  MathSciNet  Google Scholar 

  29. Georgiev, ZhD, Karagineva, I.L.: Analysis and synthesis of oscillator systems described by perturbed double hump Duffing equations. Int. J. Circuit Theory Appl. 39, 225–239 (2011)

    Article  Google Scholar 

  30. Petrov, G.S.: Number of zeros of complete elliptic integrals. Funct. Anal. Appl. 18(2), 148–149 (1984)

    Article  MathSciNet  Google Scholar 

  31. Petrov, G.S.: Non-oscillation of elliptic integrals. Funct. Anal. Appl. 24(3), 205–210 (1990)

    Article  MathSciNet  Google Scholar 

  32. Petrov, G.S.: On the nonoscillation of elliptic integrals. Funct. Anal. Appl. 31(4), 262–265 (1997)

    Article  MathSciNet  Google Scholar 

  33. Arnold, V.I.: Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields. Funct. Anal. Appl. 11(2), 85–92 (1977)

    Article  Google Scholar 

  34. Oberhettinger, F., Magnus, W.: Anwendung der Elliptishen Funktionen in Physik und Technik. Springer, Berlin (1949)

    Book  Google Scholar 

  35. Janke, E., Emde, F., Lösch, F.: Tafeln Höherer Funktionen. Teubner Verlagsgesellschaft, Stuttgart (1960)

    MATH  Google Scholar 

  36. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Physicists. Springer, Berlin (1954)

    Book  Google Scholar 

  37. Abramowitz, M., Stegun, I.A. (eds.).: Handbook of Mathematical Functions. National Bureau of Standards, Applied Mathematics Series, vol. 55, U. S. Government Printing Office, Washington (1964)

  38. Lawden, D.F.: Elliptic Functions and Applications. Springer, New York (1989)

    Book  Google Scholar 

  39. Guckenheimer, J., Rand, R., Schlomiuk, D.: Degenerate homoclinic cycles in perturbations of quadratic Hamiltonian systems. Nonlinearity 2, 405–408 (1989)

    Article  MathSciNet  Google Scholar 

  40. Wolfram Mathematica 8, Wolfram Research, Inc

  41. Savov, V., Georgiev, Zh, Todorov, T., Karagineva, I., Mastorakis, N., Mladenov, V.: Using the Melnikov function for a synthesis of generalized van der Pol systems. WSEAS Trans. Circuits Syst. 5, 1602–1607 (2006)

    Google Scholar 

  42. Sanjuan, M.A.F.: Lienard systems, limit cycles, and Melnikov theory. Phys. Rev. E 57, 340–344 (1998)

    Article  MathSciNet  Google Scholar 

  43. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Clarendon, Oxford (1995)

    MATH  Google Scholar 

  44. Kivshar, Y.S., Malomed, B.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61(4), 763 (1989)

    Article  Google Scholar 

  45. Malomed, B.A.: Variational methods in nonlinear fiber optics and related fields. Progr. Opt. 43, 69–191 (2002)

    Google Scholar 

  46. Uzunov, I.M., Muschall, R., Golles, M., Kivshar, Y.S., Malomed, B.A., Lederer, F.: Pulse switching in nonlinear fibre directional couplers. Phys. Rev. E 51, 2527–2537 (1995)

    Article  Google Scholar 

  47. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin (1986)

    Book  Google Scholar 

  48. Manganaro, N., Parker, D.F.: Similarity reductions for variable-coefficient coupled nonlinear Schrodinger equations. J. Phys. A Math. Gen. 26, 4093–4105 (1993)

    Article  MathSciNet  Google Scholar 

  49. Pulov, V.I., Uzunov, I.M., Chacarov, E.J.: Solutions and laws of conservations to coupled nonlinear Schrodinger equations. Lie group analysis. Phys. Rev. E 57, 3468–3477 (1998)

    Article  MathSciNet  Google Scholar 

  50. Maimistov, A.I.: Evolution of solitary waves which are approximately solutions of a nonlinear Schrodinger equation. J. Exp. Theor. Phys. 77(5), 727–731 (1993)

    MathSciNet  Google Scholar 

  51. Uzunov, I.M., Arabadzhiev, T.N., Georgiev, ZhD: Influence of the higher-order effects on stationary pulses in the presence of linear and nonlinear gain/loss and spectral filtering. Opt. Fiber Technol. 24, 15–23 (2015)

    Article  Google Scholar 

  52. Uzunov, I.M.: Description of the suppression of the soliton self-frequency shift by bandwidth-limited amplification. Phys. Rev. E 82, 066603 (2010)

    Article  Google Scholar 

  53. Uzunov I. M., and Georgiev Zh. D.: Localized pulsating solutions of the generalized complex cubic-quintic Ginzburg–Landau equation. J. Comput. Methods Phys., ID 308947 (2014)

  54. He, Y., Li, Ch.: On the number of limit cycles arising from perturbations of homoclinic loops of quadratic integrable systems. Differ. Equ. Dyn. Syst. 5(3/4), 303–316 (1997)

    MathSciNet  MATH  Google Scholar 

  55. Feng, B., Hu, R.: A survey on homoclinic and heteroclinic orbits. Appl. Math. E-Notes 3, 16–37 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for the detailed remarks and recommendations that helped to improve the quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan M. Uzunov.

Appendix

Appendix

In this section we give some properties and identities concerning the complete elliptic integrals of the first and second kind and the Jacobi elliptic function, which are used in the presentation. Let us recall that the complete elliptic integrals of the first and second kind, \(\mathbf{K}\) and \(\mathbf{E}\), are regarded as functions of m, where \(m=k^{2}\) and k is a modulus. In this case, we have \(\mathbf{K}=\mathbf{K}(m)\) and \(\mathbf{E}=\mathbf{E}(m)\).

The derivatives of the complete elliptic integrals \(\mathbf{K}\) and \(\mathbf{E}\) with respect to m are

$$\begin{aligned} \frac{\hbox {d}{} \mathbf{K}(m)}{\hbox {d}m}= & {} \frac{\mathbf{E}(m)-(1-m)\mathbf{K}(m)}{2m(1-m)}, \quad \frac{\hbox {d}{} \mathbf{E}(m)}{\hbox {d}m}\nonumber \\= & {} \frac{\mathbf{E}(m)-\mathbf{K}(m)}{2m} \end{aligned}$$
(A.1)

The following limit holds

$$\begin{aligned} \mathop {\lim }\limits _{m\rightarrow 1-} (1-m)\mathbf{K}(m)=0 \end{aligned}$$
(A.2)

The Legendre’s Relation

$$\begin{aligned}&\mathbf{E}(m)\mathbf{K}(1-m)+\mathbf{E}(1-m)\mathbf{K}(m)\nonumber \\&\quad -\mathbf{K}(m)\mathbf{K}(1-m)=\pi /2 \end{aligned}$$
(A.3)

at \(m=1/2\) give the inequalities

$$\begin{aligned}&[2\mathbf{E}(1/2)-\mathbf{K}(1/2)]>0,\hbox { or }[\mathbf{E}(1/2)\nonumber \\&\quad -(1/2)\mathbf{K}(1/2)]>0. \end{aligned}$$
(A.4)

For small values of m (\(m\ll 1\), or \(m\rightarrow 0+)\) the following series expansion of \(\mathbf{K}\) and \(\mathbf{E}\) are valid:

$$\begin{aligned} \mathbf{K}(m)= & {} \frac{\pi }{2}\left\{ {1+\sum _{n=1}^\infty {\left[ {\frac{(2n-1)!!}{(2n)!!}} \right] ^{2}m^{n}} } \right\} =\nonumber \\= & {} \frac{\pi }{2}\left( 1+\frac{1}{4}m+\frac{9}{64}m^{2}+\frac{25}{256}m^{3}\right. \nonumber \\&\left. +\,\frac{1225}{16384}m^{4}+\cdots \right) , \end{aligned}$$
(A.5a)
$$\begin{aligned} \mathbf{E}(m)= & {} \frac{\pi }{2}\left\{ {1-\sum _{n=1}^\infty {\left[ {\frac{(2n-1)!!}{(2n)!!}} \right] ^{2}\frac{1}{2n-1}m^{n}} } \right\} =\nonumber \\= & {} \frac{\pi }{2}\left( 1-\frac{1}{4}m-\frac{3}{64}m^{2}-\frac{5}{256}m^{3}\right. \nonumber \\&\left. -\,\frac{175}{16384}m^{4}+\cdots \right) . \end{aligned}$$
(A.5b)

For values of m close to 1 (\(m\rightarrow 1-)\) the following series expansion of \(\mathbf{K}\) and \(\mathbf{E}\) are valid:

$$\begin{aligned}&{} \mathbf{K}(m)=\ln \frac{4}{\sqrt{1-m}}+\sum _{n=1}^\infty \left\{ \left( {\frac{(2n-1)!!}{(2n)!!}} \right) ^{2}\right. \nonumber \\&\quad \left. \left[ {\ln \frac{4}{\sqrt{1-m}}-2\sum _{j=1}^n {\frac{1}{(2j-1)(2j)}} } \right] \right\} (1-m)^{n} \nonumber \\&\quad =\ln \frac{4}{\sqrt{1-m}}+\frac{1}{4}\left( {\ln \frac{4}{\sqrt{1-m}}-1} \right) (1-m)\nonumber \\&\quad +\frac{9}{64}\left( {\ln \frac{4}{\sqrt{1-m}}-\frac{7}{6}} \right) (1-m)^{2}\nonumber \\&\quad +\frac{25}{256}\left( {\ln \frac{4}{\sqrt{1-m}}-\frac{37}{30}} \right) (1-m)^{3}+\cdots ,\nonumber \\ \end{aligned}$$
(A.6a)
$$\begin{aligned}&{} \mathbf{E}(m)=1+\sum _{n=1}^\infty \left\{ \left( {\frac{(2n-1)!!}{(2n)!!}} \right) ^{2}\frac{2n}{2n-1}\right. \nonumber \\&\quad \left. \left[ \ln \frac{4}{\sqrt{1-m}}+\frac{1}{(2n-1)(2n)}\right. \right. \nonumber \\&\quad \left. \left. -\,2\sum _{j=1}^n {\frac{1}{(2j-1)(2j)}} \right] \right\} (1-m)^{n}\nonumber \\&\quad =1+\frac{1}{2}\left( {\ln \frac{4}{\sqrt{1-m}}-\frac{1}{2}} \right) (1-m)\nonumber \\&\quad +\,\frac{3}{16}\left( {\ln \frac{4}{\sqrt{1-m}}-\frac{13}{12}} \right) (1-m)^{2}\nonumber \\&\quad +\,\frac{15}{128}\left( {\ln \frac{4}{\sqrt{1-m}}-\frac{6}{5}} \right) (1-m)^{3}+\cdots \end{aligned}$$
(A.6b)

The following integral relations are valid [36] (for shorter expressions the argument of elliptic functions of Jacobi is dropped):

$$\begin{aligned} \int \limits _0^{2\mathbf{K}} {\hbox {dn}^{2}\hbox {d}z}= & {} 2\mathbf{E}, \end{aligned}$$
(A.7a)
$$\begin{aligned} \int \limits _0^{2\mathbf{K}} {\hbox {dn}^{4}\hbox {d}z}= & {} \frac{2}{3}\left[ {2(2-k^{2})\mathbf{E}-(1-k^{2})\mathbf{K}} \right] , \end{aligned}$$
(A.7b)
$$\begin{aligned} \int \limits _0^{2\mathbf{K}} {\hbox {dn}^{6}\hbox {d}z}= & {} \frac{2}{15}\left[ (8k^{4}-23k^{2}+23)\mathbf{E}\right. \nonumber \\&\left. +(-4k^{4}+12k^{2}-8)\mathbf{K} \right] , \end{aligned}$$
(A.7c)
$$\begin{aligned} \int \limits _0^{4\mathbf{K}} {\hbox {cn}^{2}\hbox {d}z}= & {} \frac{4}{k^{2}}[\mathbf{E}-(1-k^{2}) \mathbf{K}], \end{aligned}$$
(A.8a)
$$\begin{aligned} \int \limits _0^{4\mathbf{K}} {\hbox {cn}^{4}\hbox {d}z}= & {} \frac{4}{3k^{4}}\left[ {2(2k^{2}-1)\mathbf{E}+(2-5k^{2}+3k^{4})\mathbf{K}} \right] \nonumber \\= & {} \frac{4}{3k^{4}}\left[ {2(2k^{2}{-}1)\mathbf{E}{+}(2{-}3k^{2})(1{-}k^{2})\mathbf{K}} \right] ,\nonumber \\ \end{aligned}$$
(A.8b)
$$\begin{aligned} \int \limits _0^{4\mathbf{K}} {\hbox {cn}^{6}\hbox {d}z}= & {} \frac{4}{15k^{6}}\left[ (8-23k^{2}+23k^{4})\mathbf{E}\right. \nonumber \\&\left. -(8-27k^{2}+34k^{4}-15k^{6})\mathbf{K} \right] \nonumber \\= & {} \frac{4}{15k^{6}}\left[ (8-23k^{2}+23k^{4})\mathbf{E}\right. \nonumber \\&\left. -(8-19k^{2}+15k^{4})(1-k^{2})\mathbf{K} \right] . \end{aligned}$$
(A.8c)

Further let us define the functions

$$\begin{aligned} f(m)= & {} \left[ { (2-m)\mathbf{E}(m)-2 (1-m)\mathbf{K}(m)} \right] , \end{aligned}$$
(A.9)
$$\begin{aligned} g(m)= & {} [2\mathbf{E}(m)-\mathbf{K}(m)], \end{aligned}$$
(A.10)
$$\begin{aligned} F(m)= & {} [\mathbf{E}(m)-(1-m)\mathbf{K}(m)], \end{aligned}$$
(A.11)
$$\begin{aligned} G(m)= & {} 8m(1-m)[2\mathbf{E}(m)-\mathbf{K}(m)]. \end{aligned}$$
(A.12)

The properties of these functions, used in the presentation, are given in the following lemma.

Lemma A1

The following statements are valid:

  1. (a)

    \(f(0)=0\), \(f(1)=1\),

    $$\begin{aligned} f(m)>0\hbox { and }{f}'(m)=(3/2)(\mathbf{K}-\mathbf{E})>0,\nonumber \\ \end{aligned}$$
    (A.13)

    i.e. the function f(m) is positive and monotonically increasing for \(m\in (0 , 1)\).

  2. (b)

    \(g(1/2)=[2\mathbf{E}(1/2)-\mathbf{K}(1/2)]>0\), \(g(1)=-\infty \) and

    $$\begin{aligned} {g}'(m)= & {} \frac{-1}{2m(1-m)}[(2m-1)\mathbf{E}(m)\nonumber \\&+(1-m)\mathbf{K}(m)]<0, \hbox {for }m\in (1/2 , 1),\nonumber \\ \end{aligned}$$
    (A.14)

i.e. the function g(m) is monotone decreasing for \(m\in (1/2 , 1)\). Moreover, there exists unique value \(m_{ss} \), \((1/2)<m_{ss} <1\), for which we have

$$\begin{aligned}&g(m)>0\hbox { for }m\in (1/2 , m_{ss} ), \end{aligned}$$
(A.15a)
$$\begin{aligned}&g(m_{ss} )=[2\mathbf{E}(m_{ss} )-\mathbf{K}(m_{ss} )]=0, \end{aligned}$$
(A.15b)
$$\begin{aligned}&g(m)<0\hbox { for }m\in (m_{ss} , 1). \end{aligned}$$
(A.15c)

(c) \(F(0)=0\), \(F(1/2)=[\mathbf{E}(1/2)-(1/2)\mathbf{K}(1/2)]>0\), \(F(1)=1\),

$$\begin{aligned} {F}'(m)=(1/2)\mathbf{K}(m)>0, \end{aligned}$$
(A.16)

i.e. the function F(m) is positive and monotone increasing for \(m\in (0 , 1)\).

(d) \(G(1/2)=2[2\mathbf{E}(1/2)-\mathbf{K}(1/2)]>0\), \(G(m_{ss} )=0\), \(G(1)=0\) and

$$\begin{aligned} {G}'(m)<0\hbox { for }m\in (1/2 , m_{ss} ), \end{aligned}$$
(A.17)

i.e. the function G(m) is monotone decreasing for \(m\in (1/2 , m_{ss} )\).

(e) \(G(1/2)=4F(1/2)>0\), \(G(m_{ss} )=0\), \(F(m_{ss} )>0\) and there exists unique value \(m_1 \), \((1/2)<m_1 <m_{ss} \), such that

$$\begin{aligned} G(m_1 )=F(m_1 )\hbox { for }m_1 \in (1/2 , m_{ss} ). \end{aligned}$$
(A.18)

Proof

The above statements are proved by using the basic properties of the complete elliptic integrals and the facts already proven in the present lemma. A little more complicated is the proof of the inequality in (A.17) and we will outline it now. Using (A.1) we obtain

$$\begin{aligned} {G}'(m)=4[(5-10m)\mathbf{E}(m)-(3-5m)\mathbf{K}(m)]. \end{aligned}$$

The resulting expression is transformed appropriately, for example

\({G}'(m)=4\left[ {(2-5m)(2\mathbf{E}-\mathbf{K})+(\mathbf{E}-\mathbf{K})} \right] <0\) for \(m\in (1/2 , m_{ss} )\).

This proves (A.17). \(\square \)

The graphs of Functions F(m) and G(m) are shown in Fig. 13.

Fig. 13
figure 13

Graph of the Functions F(m) and G(m)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiev, Z.D., Uzunov, I.M. & Todorov, T.G. Analysis and synthesis of oscillator systems described by a perturbed double-well Duffing equation. Nonlinear Dyn 94, 57–85 (2018). https://doi.org/10.1007/s11071-018-4345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4345-4

Keywords

Navigation