Skip to main content
Log in

Global trajectory tracking control of underactuated surface vessels with non-diagonal inertial and damping matrices

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the tracking control problem of underactuated surface vessels with non-diagonal inertia and damping matrices. Based on the inherent cascaded structure of vessel dynamics and the cascaded system theory, the tacking control problem of vessels is converted to the stabilization control problem of two cascaded subsystems. Two trajectory tracking control laws are designed respectively for known and unknown model parameters. The first feedback control law is derived with the aid of Lyapunov method, realizing the global \({\mathscr {K}}\)-exponential trajectory tracking of vessels with accurate model parameters. As all the state variables in the first law are independent of model parameters, the sliding mode technique is applied to extend the first control scheme to the case of unknown model parameters, resulting into an another tracking control law, which ensures the global \({\mathscr {K}}\)-exponential stability of the closed-loop error system despite unknown model parameters. Effectiveness of the proposed controllers is demonstrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng, Z., Huang, Y., Xie, L., Zhu, B.: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output. IEEE Trans. Control Syst. Technol. (2017). https://doi.org/10.1109/TCST.2017.2728518

  2. Zheng, Z., Sun, L., Xie, L.: Error-constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2717850

  3. Ma, B.: Global \(\kappa \)-exponential asymptotic stabilization of underactuated surface vessels. Syst. Control Lett. 58(3), 194–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ma, B., Huo, W.: Smooth time-varying uniform asymptotic stabilization of underactuated surface vessels. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference (2009)

  5. Xie, W., Ma, B.: Robust position stabilization of underactuated surface vessels with unknown modeling parameters via simple P/D-like feedback: the center manifold approach. Asian J. Control 17(4), 1222–1232 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xie, W., Ma, B.: Robust global uniform asymptotic stabilization of underactuated surface vessels with unknown model parameters. Int. J. Robust Nonlinear Control 25(7), 1037–1050 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zheng, Z., Feroskhan, M.: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances. IEEE/ASME Trans. Mechatron. 22(6), 2564–2575 (2017)

    Article  Google Scholar 

  8. Xie, W., Ma, B., Fernando, T., Iu, H.H.C.: A simple robust control for global asymptotic position stabilization of underactuated surface vessels. Int. J. Robust Nonlinear Control 27(18), 5028–5043 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xie, W., Ma, B., Fernando, T., Iu, H.H.C.: A new formation control of multiple underactuated surface vessels. Int. J. Control 91(5), 1011–1022 (2018)

    Article  MathSciNet  Google Scholar 

  10. Do, K.D., Jiang, Z.P., Pan, J.: Underactuated ship global tracking under relaxed conditions. IEEE Trans. Autom. Control 47(9), 1529–1536 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002)

    Article  MATH  Google Scholar 

  12. Do, K.D., Jiang, Z.P., Pan, J., Nijmeijer, H.: A global output-feedback controller for stabilization and tracking of underactuated ODIN: a spherical underwater vehicle. Automatica 40(1), 117–124 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chwa, D.: Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method. IEEE Trans. Control Syst. Technol. 19(6), 1357–1370 (2011)

    Article  Google Scholar 

  14. Do, K.D., Jiang, Z.P., Pan, J.: Universal controllers for stabilization and tracking of underactuated ships. Syst. Control Lett. 47(4), 299–317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lefeber, E., Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated ship. IEEE Trans. Control Syst. Technol. 11(1), 52–61 (2003)

    Article  Google Scholar 

  16. Wang, K., Liu, Y., Li, L.: Vision-based tracking control of underactuated water surface robots without direct position measurement. IEEE Trans. Control Syst. Technol. 23(6), 2391–2399 (2015)

    Article  Google Scholar 

  17. Ghommam, J., Mnif, F., Derbel, N.: Global stabilisation and tracking control of underactuated surface vessels. IET Control Theory Appl. 4(1), 71–88 (2010)

    Article  MathSciNet  Google Scholar 

  18. Yan, Z., Wang, J.: Model predictive control for tracking of underactuated vessels based on recurrent neural networks. IEEE J. Ocean. Eng. 37(4), 717–726 (2012)

    Article  Google Scholar 

  19. Behal, A., Dawson, D.M., Dixon, W.E., Fang, Y.: Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control 47(3), 495–500 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pettersen, K.Y., Nijmeijer, H.: Underactuated ship tracking control: theory and experiments. Int. J. Control 74(14), 1435–1446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, Y., Zhang, Z., Xiao, N.: Global tracking controller for underactuated ship via switching design. J. Dyn. Syst. Meas. Control 136(5), 054506 (2014)

    Article  Google Scholar 

  22. Yu, R., Zhu, Q., Xia, G., Liu, Z.: Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012)

    Article  MathSciNet  Google Scholar 

  23. Ashrafiuon, H., Muske, K.R., McNinch, L.C., Soltan, R.A.: Sliding-mode tracking control of surface vessels. IEEE Trans. Ind. Electron. 55(11), 4004–4012 (2008)

    Article  Google Scholar 

  24. Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn. 84(2), 1079–1091 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Do, K.D., Pan, J.: Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices. Automatica 41(1), 87–95 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Park, B.S., Kwon, J.W., Kim, H.: Neural network-based output feedback control for reference tracking of underactuated surface vessels. Automatica 77, 353–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma, B., Xie, W.: Global asymptotic trajectory tracking and point stabilization of asymmetric underactuated ships with non-diagonal inertia/damping matrices. Int. J. Adv. Robot. Syst. 10(9), 336 (2013)

    Article  Google Scholar 

  28. Zhang, Z., Wu, Y.: Further results on global stabilisation and tracking control for underactuated surface vessels with non-diagonal inertia and damping matrices. Int. J. Control 88(9), 1679–1692 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xie, W., Sun, H., Ma, B.: Global asymptotic tracking of asymmetrical underactuated surface vessels with parameter uncertainties. J. Control Theory Appl. 11(4), 608–614 (2013)

    Article  MathSciNet  Google Scholar 

  30. Jia, Y.: Robust control with decoupling performance for steering and traction of 4ws vehicles under velocity-varying motion. IEEE Trans. Control Syst. Technol. 8(3), 554–569 (2000)

    Article  Google Scholar 

  31. Zhang, H., Wang, J.: Adaptive sliding-mode observer design for a selective catalytic reduction system of ground-vehicle diesel engines. IEEE/ASME Trans. Mechatron. 21(4), 2027–2038 (2016)

    Article  Google Scholar 

  32. Zhang, H., Wang, J.: Active steering actuator fault detection for an automatically-steered electric ground vehicle. IEEE Trans. Veh. Technol. 66(5), 3685–3702 (2017)

    Google Scholar 

  33. Chen, Y., Ma, B., Xie, W.: Robust stabilization of nonlinear PVTOL aircraft with parameter uncertainties. Asian J. Control 19(3), 1239–1249 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fossen, T.I., Grovlen, A.: Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Trans. Control Syst. Technol. 6(1), 121–128 (1998)

    Article  Google Scholar 

  35. Breivik, M., Fossen, T.I.: Motion control concepts for trajectory tracking of fully actuated ships. In: Proceedings of the 7th IFAC MCMC (2006)

  36. Lefeber, A.A.J.: Tracking control of nonlinear mechanical systems. Universiteit Twente, Eindhove, The Netherlands (2000)

    Google Scholar 

  37. Khalil, H.K.: Nonlinear Systems, vol. 3. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental and Frontier Research Project of Chongqing (No. cstc2016jcyjA0404), National Nature Science Foundation of China (No. 61573034, No. 61327807), and Fundamental Research Funds for the Central Universities (XDJK2016C038, SWU115046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoli Ma.

Appendix

Appendix

Lemma 4

Suppose that Assumption 1 holds, then the reference velocity variables \((u_r,v_r,r_r)\) are bounded, and \(\lim \nolimits _{t\rightarrow \infty }{r_r} \ne 0\).

Proof

Verify the boundedness of \((u_r,v_r,r_r)\). Define the Lyapunov function candidate:

$$\begin{aligned} \begin{aligned} V_3= \mathbf{v}_r^\mathrm{T} \mathbf{M} \mathbf{v}_r. \end{aligned} \end{aligned}$$
(32)

Differentiating \(V_3\) yields:

$$\begin{aligned} {\dot{V}}_3= & {} -\,\mathbf{v}_r^\mathrm{T} \left[ \mathbf{C}(\mathbf{v}_r)\mathbf{v}_r+\mathbf{D}{} \mathbf{v}_r-{\bar{\tau }}_r\right] \nonumber \\&-\left[ \mathbf{C}(\mathbf{v}_r)\mathbf{v}_r+\mathbf{D}{} \mathbf{v}_r-{\bar{\tau }}_r\right] ^\mathrm{T} \mathbf{v}_r\nonumber \\= & {} -\,\mathbf{v}_r^\mathrm{T} \left[ \mathbf{C}(\mathbf{v}_r)+\mathbf{C}^\mathrm{T}(\mathbf{v}_r)\right] \mathbf{v}_r\nonumber \\&-\mathbf{v}_r^\mathrm{T} \left( \mathbf{D}+\mathbf{D}^\mathrm{T}\right) \mathbf{v}_r +2\mathbf{v}_r^\mathrm{T}{\bar{\tau }}_r\nonumber \\= & {} -\,\mathbf{v}_r^\mathrm{T} \left( \mathbf{D}+\mathbf{D}^\mathrm{T}\right) \mathbf{v}_r+2\mathbf{v}_r^\mathrm{T}{\bar{\tau }}_r, \end{aligned}$$
(33)

where \(\mathbf{v}_r^\mathrm{T} \left[ \mathbf{C}(\mathbf{v}_r)+\mathbf{C}^\mathrm{T}(\mathbf{v}_r)\right] \mathbf{v}_r=0\) due to \(\mathbf{C}=-\mathbf{C}^\mathrm{T}\). Since \(\mathbf{D}+\mathbf{D}^\mathrm{T} >0\) and \(-\,\mathbf{v}_r^\mathrm{T} \cdot \) \(\left( \mathbf{D}+\mathbf{D}^\mathrm{T}\right) \mathbf{v}_r<0\), it easily follows that the system \(\mathbf{M}{\dot{\mathbf{v}}}_r+\mathbf{C}(\mathbf{v}_r)\mathbf{v}_r+\mathbf{D}{} \mathbf{v}_r={\bar{\tau }}_r\) is input-to-state stable with \({\bar{\tau }}_r\) as input. As a result, \(\mathbf{v}_r=[u_r,v_r,r_r]^\mathrm{T}\) is bounded for any bounded \({\bar{\tau }}_r=[\tau _{u_r},0,\tau _{r_r}]^\mathrm{T}\).

Verify \(\lim \nolimits _{t\rightarrow \infty }{r_r} \ne 0\) using contradiction. Suppose \(\lim \nolimits _{t\rightarrow \infty }{r_r} = 0\) holds. Since \(r_r\in {\mathscr {L}}_\infty \) and \(\lim \nolimits _{t\rightarrow \infty } r_r=0\), one gets that \(\lim \nolimits _{t\rightarrow \infty } \int _0^t {\dot{r}}_r(t)dt\) exists and remains finite. As \((u_r,v_r,r_r)\) and \((\tau _{u_r},\tau _{r_r})\) are bounded, one concludes that \(({\dot{u}}_r,{\dot{v}}_r,{\dot{r}}_r)\) are bounded. Then, \(\ddot{r}_r\) is bounded too due to the bounded \(({\dot{u}}_r,{\dot{v}}_r,{\dot{r}}_r,\dot{\tau }_{r_r})\), and \({\dot{r}}_r\) is uniformly continuous. Thus, according to the Barbalat’s lemma, \({\dot{r}}_r\) is convergent to zero.

Under \(\lim \nolimits _{t\rightarrow \infty }{r_r} = 0\), \(({\bar{v}}_r,r_r)\)-dynamics will become

$$\begin{aligned} \left\{ \begin{aligned} \dot{{\bar{v}}}_r&= -\frac{d_{22}}{m_{22}} {\bar{v}}_r,\\ {\dot{r}}_r&=\frac{1}{\varDelta }\left[ m_{22}(m_{11}-m_{22}) u_r {\bar{v}}_r\right. \\&\quad \left. +a_v {\bar{v}}_r +m_{22}\tau _{r_r} \right] \rightarrow 0. \end{aligned}\right. \end{aligned}$$
(34)

As \(m_{22}/d_{22}>0\), \({\bar{v}}_r \rightarrow 0\), and \({\dot{r}}_r\rightarrow m_{22}\tau _{r_r}/\varDelta \rightarrow 0\), which is contradictive with \(\lim \limits _{t\rightarrow \infty }\tau _{r_r} \ne 0\). Thus, \(r_r\) must satisfy \(\lim \limits _{t\rightarrow \infty }{r_r} \ne 0\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Ma, B., Huang, W. et al. Global trajectory tracking control of underactuated surface vessels with non-diagonal inertial and damping matrices. Nonlinear Dyn 92, 1481–1492 (2018). https://doi.org/10.1007/s11071-018-4141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4141-1

Keywords

Navigation