Skip to main content
Log in

Nonlocal symmetry and similarity reductions for a \(\varvec{(2+1)}\)-dimensional Korteweg–de Vries equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the Lax pair, the nonlocal symmetries to \((2+1)\)-dimensional Korteweg–de Vries equation are investigated, which are also constructed by the truncated Painlevé expansion method. Through introducing some internal spectrum parameters, infinitely many nonlocal symmetries are given. By choosing four suitable auxiliary variables, nonlocal symmetries are localized to a closed prolonged system. Via solving the initial-value problems, the finite symmetry transformations are obtained to generate new solutions. Moreover, rich explicit interaction solutions are presented by similarity reductions. In particular, bright soliton, dark soliton, bell-typed soliton and soliton interacting with elliptic solutions are found. Through computer numerical simulation, the dynamical phenomena of these interaction solutions are displayed in graphical way, which show meaningful structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stegeman, G.I., Segev, M.: Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999)

    Article  Google Scholar 

  2. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM (1981)

  3. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    Article  Google Scholar 

  4. Zabusky, N.J., Kruskal, M.D.: Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  5. Abanov, A.G., Wiegmann, P.B.: Chiral nonlinear \(\sigma \) models as models for topological superconductivity. Phys. Rev. Lett. 86, 1319–1322 (2001)

    Article  Google Scholar 

  6. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (2000)

    MATH  Google Scholar 

  7. Ren, B., Cheng, X.P., Lin, J.: The (2+ 1)-dimensional Konopelchenko–Dubrovsky equation: nonlocal symmetries and interaction solutions. Nonlinear Dyn. 86, 1855–1862 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Song, J.F., Hu, Y.H., Ma, Z.Y.: Bäcklund transformation and CRE solvability for the negative-order modified KdV equation. Nonlinear Dyn. 90, 575–580 (2017)

    Article  Google Scholar 

  9. Wang, Y.H., Wang, H.: Nonlocal symmetry, CRE solvability and soliton–cnoidal solutions of the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenkskii–Schiff equation. Nonlinear Dyn. 89, 235–241 (2017)

    Article  MATH  Google Scholar 

  10. Ren, B.: Symmetry reduction related with nonlocal symmetry for Gardner equation. Commun. Nonlinear Sci. Numer. Simul. 42, 456–463 (2017)

    Article  MathSciNet  Google Scholar 

  11. Huang, L.L., Chen, Y.: Nonlocal symmetry and similarity reductions for the Drinfeld–Sokolov–Satsuma–Hirota system. Appl. Math. Lett. 64, 177–184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vinogradov, A.M., Krasil’shchik, I.S.: A method of calculating higher symmetries of nonlinear evolutionary equations, and nonlocal symmetries. Dokl. Akad. Nauk SSSR 253, 1289–1293 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Akhatov, I.S., Gazizov, R.K.: Nonlocal symmetries. Heuristic approach. J. Math. Sci. 55, 1401–1450 (1991)

    Article  MATH  Google Scholar 

  14. Lou, S.Y., Hu, X.B.: Non-local symmetries via Darboux transformations. J. Phys. A Math. Gen. 30, L95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  16. Lou, S.Y.: Integrable models constructed from the symmetries of the modified KdV equation. Phys. Lett. B 302, 261–264 (1993)

    Article  MathSciNet  Google Scholar 

  17. Galas, F.: New nonlocal symmetries with pseudopotentials. J. Phys. A Math. Gen. 25, L981 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lou, S.Y.: Conformal invariance and integrable models. J. Phys. A Math. Phys. 30, 4803 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guthrie, G.A.: More non-local symmetries of the KdV equation. J. Phys. A Math. Gen. 26, L905 (1993)

    Article  MathSciNet  Google Scholar 

  20. Hu, X.R., Lou, S.Y., Chen, Y.: Explicit solutions from eigenfunction symmetry of the Korteweg–de Vries equation. Phys. Rev. E 85, 056607 (2012)

    Article  Google Scholar 

  21. Xin, X.P., Chen, Y.: A method to construct the nonlocal symmetries of nonlinear evolution equations. Chin. Phys. Lett. 30, 100202 (2013)

    Article  Google Scholar 

  22. Lou, S.Y., Hu, X.R., Chen, Y.: Nonlocal symmetries related to Bäcklund transformation and their applications. J. Phys. A Math. Theor. 45, 155209 (2012)

    Article  MATH  Google Scholar 

  23. Lou, S.Y.: Residual symmetries and Bäcklund transformations. arXiv:1308.1140v1 (2013)

  24. Gao, X.N., Lou, S.Y., Tang, X.Y.: Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation. JHEP 05, 029 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Peng, Y.Z.: A new (2+1)-dimensional KdV equation and its localized structures. Commun. Theor. Phys. 54, 863–865 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toda, K., Yu, S.J.: The investigation into the Schwarz–Korteweg–de Vries equation and the Schwarz derivative in (2+1) dimensions. J. Math. Phys. 41, 4747–4751 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Boiti, M., Leon, J., Pempinelli, F.: Integrable two-dimensional generalisation of the sine-and sinh-Gordon equations. Inverse Probl. 3, 37–49 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  29. Zhang, Y., Xu, G.Q.: Integrability and exact solutions for a (2+1)-dimensional variable-coefficient KdV equation. Appl. Appl. Math. 9, 646–658 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Zhao, Z.L., Han, B.: The Riemann–Bäcklund method to a quasiperiodic wave solvable generalized variable coefficient (2+1)-dimensional KdV equation. Nonlinear Dyn. 87, 2661–2676 (2017)

    Article  MATH  Google Scholar 

  31. Wazwaz, A.M.: A new (2+1)-dimensional Korteweg–de Vries equation and its extension to a new (3+1)-dimensional Kadomtsev–Petviashvili equation. Phys. Scr. 84, 035010 (2011)

    Article  MATH  Google Scholar 

  32. Wang, Y.H., Chen, Y.: Binary Bell polynomial manipulations on the integrability of a generalized (2+1)-dimensional Korteweg–de Vries equation. J. Math. Anal. Appl. 400, 624–634 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lü, X., Lin, F.H., Qi, F.H.: Analytical study on a two-dimensional Korteweg–de Vries model with bilinear representation, Bäklund transformation and soliton solutions. Appl. Math. Model. 39, 3221–3226 (2015)

    Article  MathSciNet  Google Scholar 

  34. Lü, X., Ma, W.X., Khalique, C.M.: A direct bilinear Bäcklund transformation of a (2+1) dimensional Korteweg–de Vries equation. Appl. Math. Lett. 50, 37–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, J.C., Ma, Z.Y.: Consistent Riccati expansion solvability and soliton–cnoidal wave interaction solution of a (2+1)-dimensional Korteweg–de Vries equation. Appl. Math. Lett. 64, 87–93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lou, S.Y., Hu, X.B.: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38, 6401–6427 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shin, H.J.: The dark soliton on a cnoidal wave background. J. Phys. A Math. Gen. 38, 3307–3315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shin, H.J.: Multisoliton complexes moving on a cnoidal wave background. Phys. Rev. E 71, 036628 (2005)

    Article  MathSciNet  Google Scholar 

  39. Fleischer, J.W., Segev, M., Efremidis, N.K., et al.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003)

    Article  Google Scholar 

  40. Desyatnikov, A.S., Ostrovskaya, E.A., Kivshar, Y.S., et al.: Composite band-gap solitons in nonlinear optically induced lattices. Phys. Rev. Lett. 91, 153902 (2003)

    Article  Google Scholar 

  41. Fleischer, J.W., Carmon, T., Segev, M., et al.: Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to Lou S Y for his constructive help. The work is supported by the National Natural Science Foundation of China (Grant Nos. 11435005 and 11675054), Outstanding Doctoral Dissertation Cultivation Plan of Action (Grant No. YB2016039), Global Change Research Program of China (Grant No. 2015CB953904) and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Chen, Y. Nonlocal symmetry and similarity reductions for a \(\varvec{(2+1)}\)-dimensional Korteweg–de Vries equation. Nonlinear Dyn 92, 221–234 (2018). https://doi.org/10.1007/s11071-018-4051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4051-2

Keywords

Navigation