Skip to main content
Log in

Ultimate boundary estimation and topological horseshoe analysis on a parallel 4D hyperchaotic system with any number of attractors and its multi-scroll

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper constructs a new four-dimensional autonomous hyperchaotic system with complex dynamic behaviors, and its boundary is estimated based on the proposed method and the optimization idea. Inspired by the “parallel universe theory,” a trigonometric function is used to do coordinate transformation of the original new system to generate any number of attractors. Simulation results show that there are infinite equilibriums in the transformed system. Compared with the original new system, the transformed system is more sensitive to the initial values. Based on the estimated boundary of the original system, the boundary of transformed system could be obtained. To verify the existence of chaos of the transformed system, the topology horseshoe of the system is investigated. The positive topological entropy of the transformed system verifies the existence of hyperchaos. Furthermore, selecting proper parameter values, the transformed system shows a multi-scroll attractor. Applying multi-variable trigonometric transformation can also induce any number of attractors and multi-scroll phenomenon in multi-dimension, which is an interesting phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Orue, A.B., Alvarea, G., Pastor, G., Romera, M., Montoya, F., Li, S.: A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis. Common Nonlinear Sci. 15, 3471–3483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Szolnoki, A., Mobilia, M., Jiang, L.L., Szczesny, B., Rucklidge, A.M.: Cyclic dominance in evolutionary games: a review. J. R. Soc. Interface 11, 100 (2014)

    Article  Google Scholar 

  3. Zhang, S., Gao, T.G.: A coding and substitution frame based on hyper-chaotic system for secure communication. Nonlinear Dyn. 84, 833–849 (2016)

    Article  MathSciNet  Google Scholar 

  4. Carroll, T.L.: Chaos for low probability of detection communications. Chaos Solitons Fractals 103, 238–245 (2017)

    Article  MathSciNet  Google Scholar 

  5. Dimassi, H., Loria, A.: Adaptive unknown-input observers-based synchronization of chaotic systems for telecommunication. Circuits Syst. 58, 800–812 (2011)

    MathSciNet  Google Scholar 

  6. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ai-Sawalha, M.M., Ai-Dababseh, A.F.: Nonlinear anti-synchronization of two hyperchaotic systems. Appl. Math. Sci. 5, 1849–1856 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bai, L., Zhang, G.: Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions. Appl. Math. Comput. 210, 321–333 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Kaddoum, G., Lawrance, A.J., Chargé, P., Roviras, D.: Theory and computation: chaos communication performance. Circuits Syst. Signal Process 30, 185–208 (2011)

    Article  MATH  Google Scholar 

  10. Chen, C.C., Conejero, J.A., Kostic, M., Marina, M.A.: Dynamics on binary relations over topological spaces. Symmetry 10, 211 (2018)

    Article  Google Scholar 

  11. Sprott, J.C.: A new class of chaotic circuit. Phys. Lett. A 266, 19–23 (2000)

    Article  Google Scholar 

  12. Trigeassou, J.C., Maamri, N., Oustaloup, A.: Lyapunov stability of commensurate fractional order systems: a physical interpretation. Nonlinear Dyn. 11, 051007 (2016)

    Article  Google Scholar 

  13. Nik, H.S., Golchaman, M.: Chaos control of a bounded 4D chaotic system. Neural Comput. Appl. 25, 683–692 (2014)

    Article  Google Scholar 

  14. Campagnolo, A., Berto, F., Lazzarin, P.: The effects of different boundary conditions on three-dimensional cracked discs under anti-plane loading. Eur. J. Mech. A/Solids 50, 76–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 228, 251–257 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Zhou, L.L., Chen, Z.Q., Wang, J.Z., Zhang, Q.: Local bifurcation analysis and global dynamics estimation of a novel 4-dimensional hyperchaotic system. Int. J. Bifurc. Chaos 27, 1750021 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Das, S., Pan, I., Das, S.: Effect of random parameter switching on commensurate fractional order chaotic systems. Chaos Solitons Fractals 91, 157–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, P., Li, D.M., Wu, X.Q., Yu, X.H.: Ultimate bound estimation of A class of high dimensional quadratic autonomous dynamical systems. Int. J. Bifurc. Chaos 21, 2679–2694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qi, G.Y., Zhang, J.F.: Energy cycle and bound of QI chaotic system. Chaos Solitons Fractals 99, 7–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ahmad, B., Ntouyas, S.K., Alsaedi, A.: On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals 83, 234–241 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, X., Chen, G.R.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71, 429–436 (2013)

    Article  MathSciNet  Google Scholar 

  22. Wei, Z.C.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376, 102–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, X.: Constructing a chaotic system with any number of attractors. Int. J. Bifurc. Chaos 27, 1750118 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, X., Chen, G.R.: Constructing an autonomous system with infinitely many chaotic attractors. Chaos 27, 071101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Q.D., Yang, S.: Research progress of chaotic dynamics based on topological horseshoe. J. Dyn. Control 10, 293–296 (2012)

    Google Scholar 

  26. Kennedy, J., Kocak, J.S., Yorke, J.A.: A chaos lemma. Am. Math Month. 108, 411–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wiggins, S.: Introduction to Applied Nonlinear Dynamical System and Chaos, 200–253. Springer, New York (2013)

    Google Scholar 

  28. Wang, Z.L., Zhou, L.L., Chen, Z.Q., Wang, J.Z.: Local bifurcation analysis and topological horseshoe of a 4D hyper-chaotic system. Nonlinear Dyn. 83, 2055–2066 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Q.D., Zhang, L., Yang, F.: An algorithm to automatically detect the Smale horseshoes. Discret. Dyn. Nat. Soc. 1026, 726–737 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Lakshmi, B.: Chaotic dynamics in nonlinear theory, 29–53. Springer, India (2014)

    MATH  Google Scholar 

  31. Yang, X.S.: Topological horseshoes and computer assisted verification of chaotic dynamics. Int. J. Circuit Theory Appl. 19, 1127–1145 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Qi, G.Y., Liang, X.Y.: Mechanical analysis of QI four-wing chaotic system. Nonlinear Dyn. 86, 1095–106 (2016)

    Article  Google Scholar 

  33. Pham, V.-T., Afari, S., Volos, C., Kapitaniak, T.: Different families of hidden attractors in a new chaotic system with variable equilibrium. Int. J. Bifurc. Chaos 27, 1750138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bao, B.-C., Jiang, P., Xu, Q., Chen, M.: Hidden attractors in a practical Chua’s circuit based on a modified Chua’s diode. Electron. Lett. 52, 23–25 (2015)

    Article  Google Scholar 

  35. Danca, M.F., Kuznetsov, N., Chen, G.R.: Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system. Nonlinear Dyn. 10, 1007 (2016)

    Google Scholar 

  36. Muñoz-Pacheco, J.M., Zambrano-Serrano, E., Félix-Beltrán, O., Gómez-Pavón, L.C., Luis-Ramos, A.: Synchronization of PWL function-based 2D and 3D multi-scroll chaotic systems. Nonlinear Dyn. 70, 163–1643 (2012)

    Article  MathSciNet  Google Scholar 

  37. Hu, X.Y., Liu, C.X., Liu, L., Yao, Y.P., Zheng, G.C.: Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system. Chin. Phys. B 11, 110502 (2017)

    Article  Google Scholar 

  38. Ma, J., Wu, X.Y., Chu, R.T., Zhang, L.P.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–62 (2014)

    Article  Google Scholar 

  39. Hu, X., Liu, C., Liu, L.: Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dyn. 86, 1725–1734 (2016)

    Article  Google Scholar 

  40. Ai, X.X., Sun, K.H., He, S.B., Wang, H.H.: Design of grid multiscroll chaotic attractors via transformations. Int. J. Bifurc. Chaos 25, 1530027 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. https://www.lindo.com/index.php/products/lingo-and-optiHrBmization-modelingHrB. Accessed 03 June 2017

  42. Li, Q.D., Yang, X.S.: A simple method for finding topological horseshoes. Int. J. Bifurc. Chaos 20, 467–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dong, E.Z., Yuan, M.F., Zhang, C., Tong, J.G.: Topological horseshoe analysis, ultimate boundary estimations of a new 4D Hyperchaotic system and its FPGA implementation. Int J. Bifurc. Chaos 28, 1850081 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Science Foundation of China under Grant (Nos. 61603274 and 61502340), the Foundation of the Application Base and Frontier Technology Research Project of Tianjin (No. 15JCYBJC51800), South African National Research Foundation Grants (Nos. 112108 & 112142), South African National Research Foundation Incentive Grant (No. 114911) and Tertiary Education Support Programme (TESP) of South African ESKOM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzeng Dong.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, E., Zhang, Z., Yuan, M. et al. Ultimate boundary estimation and topological horseshoe analysis on a parallel 4D hyperchaotic system with any number of attractors and its multi-scroll. Nonlinear Dyn 95, 3219–3236 (2019). https://doi.org/10.1007/s11071-018-04751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-04751-3

Keywords

Navigation