Skip to main content

Advertisement

Log in

Delay-dependent dissipativity criteria for Markovian jump neural networks with random delays and incomplete transition probabilities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new double integral inequality which covers the well-known Wirtinger’s double integral inequality has been developed to analyze the dissipativity behavior of continuous-time neural networks involving Markovian jumping parameters with some unknown transition probabilities and random delays. Based on this generalized double integral inequality, the dissipativity conditions are proposed in terms of linear matrix inequalities by constructing an appropriate Lyapunov–Krasovskii functional with some multiple integral terms under the consideration of free-matrix-based integral inequality and Finsler’s lemma approach. Finally, the effectiveness and the advantages of the proposed technique have been exhibited through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lakshmanan, S., Park, J.H., Jung, H.Y., Kwon, O.M., Rakkiyappan, R.: A delay partitioning approach to delay-dependent stability analysis for neutral type neural networks with discrete and distributed delays. Neurocomputing 111, 81–89 (2013)

    Article  Google Scholar 

  2. Zhu, Q., Cao, J.: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays. IEEE Trans. Neural Netw. Learn. Syst. 23, 467–479 (2012)

    Article  MathSciNet  Google Scholar 

  3. Yang, B., Wang, J., Wang, J.: Stability analysis of delayed neural networks via a new integral inequality. Neural Netw. 88, 49–57 (2017)

    Article  Google Scholar 

  4. Hien, L.V.: On global exponential stability of positive neural networks with time-varying delay. Neural Netw. 87, 22–26 (2017)

    Article  Google Scholar 

  5. Syed Ali, M., Saravanakumar, R., Ahn, C.K., Karimi, H.R.: Stochastic \(H_{\infty }\) filtering for neural networks with leakage delay and mixed time-varying delays. Inf. Sci. (2017). https://doi.org/10.1016/j.ins.2017.01.010

    Google Scholar 

  6. Wu, Z.G., Shi, P., Su, H., Chu, J.: Asynchronous \(L_2 - L_{\infty }\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica 50, 180–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wu, Z.G., Shi, P., Su, H., Chu, J.: stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data. IEEE Trans. Cybern. 43, 1796–1806 (2013)

    Article  Google Scholar 

  8. Syed Ali, M., Yogambigai, J.: Synchronization of complex dynamical networks with hybrid coupling delays on time scales by handling multitude Kronecker product terms. Appl. Math. Comput. 291, 244–258 (2016)

    MathSciNet  Google Scholar 

  9. Wang, Z., Ding, S., Shan, Q., Zhang, H.: Stability of recurrent neural networks with time-varying delay via flexible terminal method. IEEE Trans. Neural Netw. Learn. Syst. 28, 2456–2463 (2017)

    Article  MathSciNet  Google Scholar 

  10. Song, Q., Yan, H., Zhao, Z., Liu, Y.: Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays. Neural Netw. 81, 1–10 (2016)

    Article  Google Scholar 

  11. Chen, H., Zhong, S., Shao, J.: Exponential stability criterion for interval neural networks with discrete and distributed delays. Appl. Math. Comput. 250, 121–130 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Zheng, W.X.: Stochastic state estimation for neural networks with distributed delays and Markovian jump. Neural Netw. 25, 14–20 (2012)

    Article  MATH  Google Scholar 

  13. Chen, B., Li, H., Lin, C., Zhou, Q.: Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays. Phys. Lett. A 373, 1242–1248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, D., Yu, L.: Exponential state estimation for Markovian jumping neural networks with time-varying discrete and distributed delays. Neural Netw. 35, 103–111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rakkiyappan, R., Latha, V.P., Zhu, Q., Yao, Z.: Exponential synchronization of Markovian jumping chaotic neural networks with sampled-data and saturating actuators. Nonlinear Anal. Hybrid Syst. 24, 28–44 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cui, W., Sun, S., Fang, J., Xu, Y., Zhao, L.: Finite-time synchronization of Markovian jump complex networks with partially unknown transition rates. J. Frankl. Inst. 351, 2543–2561 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhong, Q., Bai, J., Wen, B., Li, S., Zhong, F.: Finite-time boundedness filtering for discrete-time Markovian jump system subject to partly unknown transition probabilities. ISA Trans. 53, 1107–1118 (2014)

    Article  Google Scholar 

  18. Mahmoud, M.S., Khan, G.D.: Dissipativity analysis for discrete stochastic neural networks with Markovian delays and partially known transition matrix. Appl. Math. Comput. 228, 292–310 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Syed Ali, M., Saravanan, S., Cao, J.: Finite-time boundedness, \(L _2\)-gain analysis and control of Markovian jump switched neural networks with additive time-varying delays. Nonlinear Anal. Hybrid Syst. 23, 27–43 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J., Yao, F., Shen, H.: Dissipativity based state estimation for Markov jump discrete-time neural networks with unreliable communication links. Neurocomputing 139, 107–113 (2014)

    Article  Google Scholar 

  21. Li, H., Lam, J., Cheung, K.C.: Passivity criteria for continuous-time neural networks with mixed time-varying delays. Appl. Math. Comput. 218, 11062–11074 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Wu, Z.G., Park, J.H., Su, H., Chu, J.: Passivity analysis of MJNNs with mixed time-delays and piecewise-constant transition rates. Nonlinear Anal. Real World Appl. 13, 2423–2431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, G., Xia, J., Zhuang, G.: Improved passivity analysis for neural networks with Markovian jumping parameters and interval time-varying delays. Neurocomputing 155, 253–260 (2015)

    Article  Google Scholar 

  24. Syed Ali, M., Arik, S., Esther Rani, M.: Passivity analysis of stochastic neural networks with leakage delay and Markovian jumping parameters. Neurocomputing (2016). https://doi.org/10.1016/j.neucom.2016.08.062

    Google Scholar 

  25. Ding, S., Wang, Z., Zang, H.: Dissipativity analysis for stochastic Memristive neural networks with time-varying delays: a discrete-time case. IEEE Trans. Neural Netw. Learn. Syst. (2016). https://doi.org/10.1109/TNNLS.2016.2631624

  26. Kottenstette, N., McCourt, M.J., Xia, M., Gupta, V., Antsaklis, P.J.: On relationships among passivity, positive realness, and dissipativity in linear systems. Automatica 50, 1003–1016 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, Z., Wang, J., Yan, Z.: Global exponential dissipativity and stabilization of memristor based recurrent neural networks with time-varying delays. Neural Netw. 48, 158–172 (2013)

    Article  MATH  Google Scholar 

  28. Wang, L., Zhang, L., Ding, X.: Global dissipativity of a class of BAM neural networks with both time-varying and continuously distributed delays. Neurocomputing 152, 250–260 (2015)

    Article  Google Scholar 

  29. Pan, Y., Zhou, Q., Lu, Q., Wu, C.: New dissipativity condition of stochastic fuzzy neural networks with discrete and distributed time-varying delays. Neurocomputing 162, 250–260 (2015)

    Article  Google Scholar 

  30. Chen, Y., Zheng, W.X., Xue, A.: A new result on stability analysis for stochastic neutral systems. Automatica 46, 2100–2104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, Y., Cui, B.T.: Dissipativity analysis of neural networks with time-varying delays. Int. J. Autom. Comput. 05, 290–295 (2008)

    Article  Google Scholar 

  32. Zeng, H.B., He, Y., Shi, P., Wu, M., Xiao, S.P.: Dissipativity analysis of neural networks with time-varying delays. Neurocomputing 168, 741–746 (2015)

    Article  Google Scholar 

  33. Zeng, H.B., He, Y., Shi, P., Wu, M., Xiao, S.P.: Passivity analysis of neural networks with a time-varying delay. Neurocomputing 74, 730–734 (2011)

    Article  Google Scholar 

  34. Zhang, Z., Mou, S., Lam, J., Gao, H.: New passivity criteria for neural networks with time-varying delays. Neural Netw. 22, 864–868 (2009)

    Article  MATH  Google Scholar 

  35. Xu, S., Zheng, W.X., Zou, Y.: Passivity analysis of neural networks with time-varying delays. IEEE Trans. Circuits Syst. II(56), 325–329 (2009)

    Google Scholar 

  36. Samidurai, R., Senthilraj, S., Zhu, Q., Raja, R., Hu, W.: Effects of leakage delays and impulsive control in dissipativity analysis of Takagi–Sugeno fuzzy neural networks with randomly occurring uncertainties. J. Frankl. Inst. 354, 3574–3593 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, Y., Park, J.H., Guo, B.-Z.: Results on stability of linear systems with time varying delay. IET Control Theory Appl. 11, 129–134 (2017)

    Article  MathSciNet  Google Scholar 

  38. Gyurkovics, E., Szabo-Varga, G., Kiss, K.: Stability analysis of linear systems with interval time-varying delays utilizing multiple integral inequalities. Appl. Math. Comput. 311, 164–177 (2017)

    MathSciNet  Google Scholar 

  39. Park, M.J., Kwon, O.M., Park, J.H., Lee, S.M., Cha, E.J.: Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica 55, 204–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, B., Xu, S., Lam, J.: Relaxed passivity conditions for neural networks with time-varying delays. Neurocomputing 142, 299–306 (2014)

    Article  Google Scholar 

  41. Hua, C., Wu, S., Yang, S., Guan, X.: Stability analysis of time-delay systems via free-matrix-based double integral inequality. Int. J. Syst. Sci. 48, 257–263 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zeng, H.B., He, Y., Wu, M., She, J.: Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Autom. Control 60, 2768–2772 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zeng, H.B., Park, J.H., Xia, J.W.: Further results on dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties. Nonlinear Dyn. 79, 83–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu, Z., Park, J.H., Su, H., Chu, J.: Robust dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties. Nonlinear Dyn. 69, 1323–1332 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  46. Wang, Z., Ding, S., Zhang, H.: Hierarchy of stability criterion for time-delay systems based on multiple integral approach. Appl. Math. Comput. 314, 422–428 (2017)

    MathSciNet  Google Scholar 

  47. Zhang, Y., Han, Q.L.: Network-based synchronization of delayed neural networks. IEEE Trans. Circuits Syst. I 60, 676–689 (2013)

    Article  MathSciNet  Google Scholar 

  48. Wang, Z., Ding, S., Huang, Z., Zhang, H.: Exponential stability and stabilization of delayed Memristive neural networks based on quadratic convex combination method. IEEE Trans. Neural Netw. Learn. Syst. (2015). https://doi.org/10.1109/TNNLS.2015.2485259

  49. Muthukumar, P., Subramanian, K.: Stability criteria for Markovian jump neural networks with mode dependent additive time-varying delays via quadratic convex combination. Neurocomputing 205, 75–83 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hoon Joo.

Additional information

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A1A03013567) and by Korea Electric Power Corporation (Grant Number R17XA05-17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagamani, G., Joo, Y.H. & Radhika, T. Delay-dependent dissipativity criteria for Markovian jump neural networks with random delays and incomplete transition probabilities. Nonlinear Dyn 91, 2503–2522 (2018). https://doi.org/10.1007/s11071-017-4028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-4028-6

Keywords

Navigation