Skip to main content
Log in

Sensor fault estimation for fractional-order descriptor one-sided Lipschitz systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Up to now, the problem of sensor fault estimation for integer-order descriptor systems has been tackled by several researchers. However, no attempt has been done to estimate sensor faults for fractional-order descriptor systems. In this context, this paper presents a complete methodology to solve this problem. On the other hand, to the best of our knowledge, among all the existing works dealing with the observer design task for fractional-order descriptor systems, no paper has treated the special class of one-sided Lipschitz systems. In this paper, the designed observer is capable of estimating sensor faults for one-sided Lipschitz systems, thanks to a linear matrix inequality technique. In order to validate the theoretical results, a second-order numerical example as well as a third-order one are studied in the simulation section. The simulation results show that the sensor fault estimates are satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hu, Z.G., Zhao, G.R., Zhou, D.W.: Active fault tolerant control based on fault estimation. Appl. Mech. Mater. 635–637, 1199–1202 (2014)

    Article  Google Scholar 

  2. Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault-tolerant Control Using Sliding Modes. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  3. Naifar, O., Boukattaya, G., Ouali, A.: Robust software sensor with online estimation of stator resistance applied to WECS using IM. Int. J. Adv. Manuf. Technol. (2015). https://doi.org/10.1007/s00170-015-7753-3

  4. Naifar, O., Makhlouf, A.B., Hammami, M.A.: On observer design for a class of nonlinear systems including unknown time-delay. Mediterr. J. Math. 13, 2841 (2016). https://doi.org/10.1007/s00009-015-0659-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Naifar, O., Makhlouf, A.B., Hammami, M.A., Ouali, A.: State feedback control law for a class of nonlinear time-varying system under unknown time-varying delay. Nonlinear Dyn. 82, 349 (2015). https://doi.org/10.1007/s11071-015-2162-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Gouta, H., Saïd, S.H., Barhoumi, N., M’Sahli, F.: Generalized predictive control for a coupled four tank MIMO system using a continuous-discrete time observer. ISA Trans. 67, 280–292 (2016)

    Article  Google Scholar 

  7. Efimov, D., Zolghadri, A.: Optimization of fault detection performance for a class of nonlinear systems. Int. J. Robust Nonlinear Control 22(17), 1969–1982 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mahmoud, M.S., Xia, Y.: Analysis and Synthesis of Fault Tolerant Control Systems. Wiley, New York (2014)

    Google Scholar 

  9. Kahkeshi, M.S., Sheikholeslam, F., Askari, J.: Adaptive fault detection and estimation scheme for a class of uncertain nonlinear systems. Nonlinear Dyn. 79, 2623–2637 (2014)

    Article  MathSciNet  Google Scholar 

  10. Abbazadeh, M., Marquez, H.J.: Nonlinear observer design for one-sided Lipschitz systems. In: Proceeding 2010 American Control Conference, Baltimore, USA, pp. 5284–5289 (2010)

  11. Hu, G.D.: Observers for one-sided Lipschitz nonlinear systems. IMA J. Math. Control Inf. 23, 395–401 (2006)

    Article  MATH  Google Scholar 

  12. Zhang, W., Su, H.S., Liang, Y., Han, Z.Z.: Non-linear observer design for one-sided Lipschitz systems: an linear matrix inequality approach. IET Control Theory Appl. 6, 1297–1303 (2012)

    Article  MathSciNet  Google Scholar 

  13. Karkhane, M., Pourgholi, M.: Adaptive observer design for one sided Lipschitz class of nonlinear systems. Modares J. Electr. Eng. 11, 45–51 (2012)

    Google Scholar 

  14. Engheta, N.: On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 44(4), 554–566 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dadras, S., Momeni, H.R.: A new fractional order observer design for fractional order nonlinear systems. In: Proceedings of ASME 2011 International Design Engineering Technical Conference and Computers and Information in Engineering Conference, Washington DC, USA, DETC2011-48861 (2011)

  16. Dadras, S., Momeni, H.R.: Fractional sliding mode observer design for a class of uncertain fractional order nonlinear systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) (2011)

  17. Naifar, O., Makhlouf, A.B., Hammami, M.A.: Comments on “Lyapunov stability theorem about fractional system without and with delay”. Commun. Nonlinear Sci. Numer. Simul. 30(1), 360–361 (2016)

    Article  MathSciNet  Google Scholar 

  18. Naifar, O., Makhlouf, A.B., Hammami, M.A.: Comments on “Mittag–Leffler stability of fractional order nonlinear dynamic systems [Automatica 45 (8)(2009) 1965–1969]”. Automatica 75, 329 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jmal, A., Naifar, O., Derbel, N.: Unknown Input observer design for fractional-order one-sided Lipschitz systems. In: SSD conference, Marrakech, Morocco (2017)

  20. Lan, Y.H., Li, W.J., Zhou, Y., Luo, Y.P.: Non-fragile observer design for fractional-order one-sided Lipschitz nonlinear systems. Int. J. Autom. Comput. 10(4), 296–302 (2013)

    Article  Google Scholar 

  21. Lewis, F.L.: A survey of linear singular systems. Circuits Syst. Signal Process. 5, 3–36 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Darouach, M.: On the functional observers for linear descriptor systems. Syst. Control Lett. 61, 427–434 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abbaszadeh, M., Marquez, H.J.: A generalized framework for robust nonlinear \(\text{ H }\infty \) filtering of Lipschitz descriptor systems with parametric and nonlinear uncertainties. Automatica 48(5), 894–900 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, P., Yang, W.T., Yang, C.E.: Robust observer-based output feedback control for fuzzy descriptor systems. Expert Syst. Appl. 40(11), 4503–4510 (2013)

    Article  Google Scholar 

  25. Zhang, H., Wu, D., Cao, J., Zhang, H.: Stability analysis for fractional-order linear singular delay differential systems. Discrete Dyn. Nat. Soc. 2014 (2014). https://doi.org/10.1155/2014/850279

  26. Ji, Y., Qiu, J.: Stabilization of fractional-order singular uncertain systems. ISA Trans. 56, 53–64 (2015)

    Article  Google Scholar 

  27. Zulfiqar, A., Rehan, M., Abid, M.: Observer design for one-sided Lipschitz descriptor systems. Appl. Math. Model. 40(3), 2301–2311 (2016)

    Article  MathSciNet  Google Scholar 

  28. Tian, J., Ma, S.: Reduced order \(\text{ H }\infty \) observer design for one-sided Lipschitz nonlinear continuous-time singular Markov jump systems. In: 35th Chinese Control Conference (CCC), pp. 709–714. IEEE (2016)

  29. Gao, Z., Ho, D.W.: State/noise estimator for descriptor systems with application to sensor fault diagnosis. IEEE Trans. Signal Process. 54(4), 1316–1326 (2006)

    Article  MATH  Google Scholar 

  30. Li, X., Zhu, F.: Simultaneous actuator and sensor fault estimation for descriptor LPV system based on \(\text{ H }\infty \) reduced order observer. Optim. Control Appl. Methods 37(6), 1122–1138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gupta, M.K., Tomar, N.K., Bhaumik, S.: Observer design for descriptor systems with Lipschitz nonlinearities: an LMI approach. Nonlinear Dynam. Syst. Theory 14(3), 292–302 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  34. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rodrigues, M., Hamdi, H., Theilliol, D., Mechmeche, C., Braiek, BenHadj, N.: Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems. Int. J. Robust Nonlinear Control 25(5), 673–688 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, J., Swain, A.K., Nguang, S.K.: Robust \(\text{ H }\infty \) adaptive descriptor observer design for fault estimation of uncertain nonlinear systems. J. Franklin Inst. 351(11), 5162–5181 (2014)

    Article  MATH  Google Scholar 

  38. Gupta, M.K., Tomar, N.K., Bhaumik, S.: Detectability and observer design for linear descriptor system. In: 22nd Mediterranean Conference on Control and Automation, pp. 1094–1098. IEEE (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaad Jmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jmal, A., Naifar, O., Ben Makhlouf, A. et al. Sensor fault estimation for fractional-order descriptor one-sided Lipschitz systems. Nonlinear Dyn 91, 1713–1722 (2018). https://doi.org/10.1007/s11071-017-3976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3976-1

Keywords

Navigation