Skip to main content
Log in

Edge-based epidemic dynamics with multiple routes of transmission on random networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper concerns the SIR dynamics with two types of spreading mechanism, i.e., local spreading through network contacts and global spreading through casual contacts. A low-dimensional edge-based model of ordinary differential equations incorporating arbitrary heterogeneous number of individual contacts is formulated. The basic reproduction number \(R_{0}\) is obtained, and on networks of Poisson type, it is the sum of the basic reproduction numbers for global and local spreading pathways; however, on networks of other type, it is a nonlinear function of the basic reproduction numbers for global and local spreading pathways. To measure the control efforts imposed on one specific transmission pathway, type reproduction numbers for global and local transmission pathways are calculated, respectively. Equations of the final epidemic size are analytically derived. Finally, the numerical solutions to our model are compared with the ensemble averages of the stochastic simulations. Simulations have shown that casual contacts in the population may trigger large stochastic fluctuations, which may cause huge variances around their mean; thus, in this scenario the ensemble mean is not a good representation of the behavior of the stochastic epidemic process. However, increasing the local infection rate or the connectedness of networks yields better predictions. The results presented provide insights in setting a framework for the analysis and containment of multiple routes of epidemic transmission in reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  2. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diekmann, O., de Jong, M.C.M., Metz, J.A.J.: A deterministic epidemic model taking into account of repeated contacts between the same individuals. J. Appl. Prob. 35, 448–462 (1998)

    Article  MATH  Google Scholar 

  4. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  Google Scholar 

  5. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B 26, 521–529 (2002)

    Google Scholar 

  6. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002)

    Article  MathSciNet  Google Scholar 

  7. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  8. Albert, A., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6, 161–180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jones, H.J., Handcock, M.S.: An assessment of preferential attachment as a mechanism for human sexual network formation. Proc. R. Soc. Lond. B 270, 1123–1128 (2003)

    Article  Google Scholar 

  11. Musso, D., Roche, C., Robin, E., et al.: Potential sexual transmission of Zika virus. Emerg. Infect. Dis. 21, 359–361 (2015)

    Article  Google Scholar 

  12. Mate, S.E., Kugelman, J.R., Nyenswah, T.G., et al.: Molecular evidence of sexual transmission of Ebola virus. N. Engl. J. Med. 373, 2448–2454 (2015)

    Article  Google Scholar 

  13. Ball, F., Neal, P.: A general model for stochastic SIR epidemics with two levels of mixing. Math. Biosci. 180, 73–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kiss, I.Z., Green, D.M., Kao, R.R.: The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math. Biosci. 203, 124–136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Y., Jin, Z., Yang, Z.M., et al.: Global analysis of an SIS model with an infective vector on complex networks. Nonlin. Anal. RWA 13, 543–557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, Y., Jin, Z.: Global analysis of multiple routes of disease transmission on heterogeneous networks. Physica A 392, 3869–3880 (2013)

    Article  MathSciNet  Google Scholar 

  17. Wang, Y., Cao, J.D.: Global dynamics of a network epidemic model for waterborne diseases spread. Appl. Math. Comput. 237, 474–488 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Wang, Y., Cao, J.D., Alofi, A., et al.: Revisiting node-based SIR models in complex networks with degree correlations. Physica A 437, 75–88 (2015)

    Article  Google Scholar 

  19. Ball, F., Neal, P.: Network epidemic models with two levels of mixing. Math. Biosci. 212, 69–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindquist, J., Ma, J., van den Driessche, P., Willeboordse, F.H.: Effective degree network disease models. J. Math. Biol. 62, 143–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Volz, E.M.: SIR dynamics in random networks with heterogeneous connectivity. J. Math. Biol. 56, 293–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miller, J.C.: A note on a paper by Erik Volz: SIR dynamics in random networks. J. Math. Biol. 62, 349–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9, 890–906 (2012)

    Article  Google Scholar 

  24. Koch, D., Illner, R., Ma, J.: Edge removal in random contact networks and the basic reproduction number. J. Math. Biol. 67, 217–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, M., Ma, J., van den Driessche, P.: Model for disease dynamics of a waterborne pathogen on a random network. J. Math. Biol. 74, 961–977 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  27. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_{0}\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, J., Earn, D.J.D.: Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol. 68, 679–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miller, J.C.: Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes. Infect. Dis. Model. 2, 35–55 (2017)

    Article  Google Scholar 

  30. Karrer, B., Newman, M.E.J.: Message passing approach for general epidemic models. Phys. Rev. E 82, 016101 (2010)

    Article  MathSciNet  Google Scholar 

  31. Feld, S.L.: Why your friends have more friends than you do. Am. J. Sociol. 96, 1464–1477 (1991)

    Article  Google Scholar 

  32. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Roberts, M.G., Heesterbeek, J.A.P.: A new method for estimating the effort required to control an infectious disease. Proc. R. Soc. Lond. B 270, 1359–1364 (2003)

    Article  Google Scholar 

  34. Heesterbeek, J.A.P., Roberts, M.G.: The type-reproduction number \(T\) in models for infectious disease control. Math. Biosci. 206, 3–10 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Y., Cao, J.D., Alsaedi, A., Ahmad, B.: Edge-based SEIR dynamics with or without infectious force in latent period on random networks. Commun. Nonlin. Sci. Numer. Simulat. 45, 35–54 (2017)

    Article  MathSciNet  Google Scholar 

  36. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 2, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  37. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

The Project was supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG170622), and was partially supported by the National Natural Science Foundation of China under Grant Nos. 61573096 and 61272530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cao, J., Li, X. et al. Edge-based epidemic dynamics with multiple routes of transmission on random networks. Nonlinear Dyn 91, 403–420 (2018). https://doi.org/10.1007/s11071-017-3877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3877-3

Keywords

Navigation