Skip to main content
Log in

Distributed group cooperative guidance for multiple missiles with fixed and switching directed communication topologies

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Distributed group cooperative guidance (DGCG) problems for multiple missiles with fixed and switching directed communication topologies are dealt with. In contrast to traditional cooperative guidance utilized to intercept one single target, the group cooperative guidance is applicable to multiple targets. In the group cooperative attack, multi-missile system is classified into multiple subgroups, and each subgroup attacks its respective target. Missiles in the same subgroup are required to reach the target simultaneously, while different subgroups may cooperate successively in terms of the impact time. To realize the group cooperative attack, a two-step guidance strategy is developed. The first step adopts a DGCG law based on local neighboring information for multiple missiles to realize group consensus on range-to-go and leading angle. The second step begins when the group consensus of missiles is achieved. During this step, each missile attacks the target under the proportional navigation guidance law. Derived from feedback linearization and convergence analysis, sufficient conditions for multiple missiles to realize the group cooperative attack with fixed and switching directed communication topologies are proposed, respectively. Finally, numerical examples with two subgroups are given to show the effectiveness of the two-step guidance strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dong, X., Yu, B., Shi, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2015)

    Article  Google Scholar 

  2. Dong, X., Zhou, Y., Ren, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control Eng. Pract. 46, 26–36 (2016)

    Article  Google Scholar 

  3. Dong, X., Zhou, Y., Ren, Z., Zhong, Y.: Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. Ind. Electron. DOI:10.1109/TIE.2016.2593656 (2016)

  4. Jeon, I.S., Lee, J.I., Tahk, M.J.: Impact-time-control guidance law for anti-ship missiles. IEEE Trans. Control Syst. Technol. 14(2), 260–266 (2006)

    Article  Google Scholar 

  5. Lee, J.I., Jeon, I.S., Tahk, M.J.: Guidance law to control impact time and angle. IEEE Trans. Control Syst. Technol. 43(1), 301–310 (2007)

    Google Scholar 

  6. Zhang, Y., Ma, G., Liu, A.: Guidance law with impact time and impact angle constraints. Chin. J. Aeronaut. 26(4), 960–966 (2013)

    Article  Google Scholar 

  7. Zhang, Y., Wang, X., Ma, G.: Impact time control guidance law with large impact angle constraint. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 229(11), 2119–2131 (2015)

    Article  Google Scholar 

  8. Harl, N., Balakrishnan, S.N.: Impact time and angle guidance with sliding mode control. IEEE Trans. Control Syst. Technol. 20(6), 1436–1449 (2012)

    Article  Google Scholar 

  9. Zhang, Y., Wang, X., Wu, H.: Impact time control guidance law with field of view constraint. Aerosp. Sci. Technol. 39, 361–369 (2014)

    Article  Google Scholar 

  10. Wang, X., Zheng, Y., Lin, H.: Integrated guidance and control law for cooperative attack of multiple missiles. Aerosp. Sci. Technol. 42, 1–11 (2015)

    Article  Google Scholar 

  11. Zhang, Y., Wang, X., Wu, H.: Impact time control guidance with field-of-view constraint accounting for uncertain system lag. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. DOI:10.1177/0954410015594401 (2016)

  12. Zhao, S., Zhou, R.: Cooperative guidance for multimissile salvo attack. Chin. J. Aeronaut. 21(6), 533–539 (2008)

    Article  Google Scholar 

  13. Hou, D., Wang, Q., Sun, X., Dong, C.: Finite-time cooperative guidance laws for multiple missiles with acceleration saturation constraints. IET Control Theory Appl. 9(10), 1525–1535 (2015)

    Article  MathSciNet  Google Scholar 

  14. Zhang, Y., Wang, X., Wu, H.: A distributed cooperative guidance law for salvo attack of multiple anti-ship missiles. Chin. J. Aeronaut. 28(5), 1438–1450 (2015)

    Article  Google Scholar 

  15. Wang, X., Zhang, Y., Wu, H.: Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerosp. Sci. Technol. 46, 299–311 (2015)

    Article  Google Scholar 

  16. Jeon, I.S., Lee, J.I., Tahk, M.J.: Homing guidance law for cooperative attack of multiple missiles. J. Guid. Control Dyn. 33(1), 275–280 (2010)

    Article  Google Scholar 

  17. Harrison, G.A.: Hybrid guidance law for approach angle and time-of-arrival control. J. Guid. Control Dyn. 35(4), 1104–1114 (2012)

    Article  Google Scholar 

  18. Zhao, J., Zhou, R.: Unified approach to cooperative guidance laws against stationary and maneuvering targets. Nonlinear Dyn. 81(4), 1635–1647 (2015)

    Article  Google Scholar 

  19. Zhao, J., Zhou, R., Dong, Z.: Three-dimensional cooperative guidance laws against stationary and maneuvering targets. Chin. J. Aeronaut. 28(4), 1104–1120 (2015)

    Article  Google Scholar 

  20. Zhou, J., Yang, J.: Distributed guidance law design for cooperative simultaneous attacks with multiple missiles. J. Guid. Control Dyn. 39(10), 2436–2444 (2016)

    Article  Google Scholar 

  21. Zhao, J., Zhou, R.: Obstacle avoidance for multi-missile network via distributed coordination algorithm. Chin. J. Aeronaut. 29(2), 441–447 (2016)

    Article  Google Scholar 

  22. Zhao, J., Zhou, S., Zhou, R.: Distributed time-constrained guidance using nonlinear model predictive control. Nonlinear Dyn. 84(3), 1399–1416 (2016)

    Article  MathSciNet  Google Scholar 

  23. Zhao, J., Zhou, R.: Distributed three-dimensional cooperative guidance via receding horizon control. Chin. J. Aeronaut. 29(4), 972–983 (2016)

    Article  Google Scholar 

  24. Wang, Y., Dong, S., Ou, L., Liu, L.: Cooperative control of multi-missile systems. IET Control Theory Appl. 9(3), 441–446 (2014)

    Article  MathSciNet  Google Scholar 

  25. Sun, X., Zhou, R., Hou, D., Wu, J.: Consensus of leader–followers system of multi-missile with time-delays and switching topologies. Opt. Int. J. Light Electron Opt. 125(3), 1202–1208 (2014)

    Article  Google Scholar 

  26. Zou, L., Zhou, R., Zhao, S., Ding, Q.: Decentralized cooperative guidance for multiple missile groups in salvo attack. Acta Aeronaut. Astronaut. Sin. 32(2), 281–289 (2011)

    Google Scholar 

  27. Dong, X., Hu, G.: Time-varying formation control for general linear multi-agent systems with switching directed topologies. Automatica 73, 47–55 (2016)

  28. Ni, W., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 59(3), 209–217 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dong, X., Shi, Z., Lu, G., Zhong, Y.: Time-varying formation control for high-order linear swarm systems with switching interaction topologies. IET Control Theory Appl. 8(18), 2162–2170 (2014)

    Article  MathSciNet  Google Scholar 

  30. Yu, J., Wang, L.: Group consensus of multi-agent systems with directed information exchange. Int. J. Syst. Sci. 43(2), 334–348 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yu, C., Qin, J., Gao, H.: Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control. Automatica 50(9), 2341–2349 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Qin, J., Yu, C.: Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition. Automatica 49(9), 2898–2905 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Liu, J., Ji, J., Zhou, J., Xiang, L., Zhao, L.: Adaptive group consensus in uncertain networked Euler-Lagrange systems under directed topology. Nonlinear Dyn. 82(3), 1145–1157 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  34. Feng, Y., Xu, S., Zhang, B.: Group consensus control for double-integrator dynamic multiagent systems with fixed communication topology. Int. J. Robust Nonlinear Control 24(3), 532–547 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  35. Dehghani, M.A., Menhaj, M.B.: Communication free leader–follower formation control of unmanned aircraft systems. Robot. Auton. Syst. 80, 69–75 (2016)

    Article  Google Scholar 

  36. Jin, X.: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica 68, 228–236 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kim, T.H., Park, B.G., Tahk, M.J.: Bias-shaping method for biased proportional navigation with terminal-angle constraint. J. Guid. Control Dyn. 36(6), 1810–1816 (2013)

    Article  Google Scholar 

  38. Morse, A.S.: Supervisory control of families of linear set-point controllers Part I. Exact matching. IEEE Trans. Autom. Control 41(10), 1413–1431 (1996)

    Article  MATH  Google Scholar 

  39. Su, H., Chen, M., Lam, J., Lin, Z.: Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback. IEEE Trans. Circuits Syst. 60(7), 1881–1889 (2013)

    Article  MathSciNet  Google Scholar 

  40. Roy, S., Saberi, A., Herlugson, K.: Formation and alignment of distributed sensing agents with double-integrator dynamics and actuator saturation. Sens. Netw. Appl. (2004)

Download references

Acknowledgements

The authors would like to thank the editor and the reviewers for their insightful and constructive comments. This work is supported by the National Natural Science Foundation of China (Nos. 61503009, 61333011 and 61421063), the Aeronautical Science Foundation of China (No. 2016ZA51005), the Fundamental Research Funds for the Central Universities of China (No. YWF-17-BJ-Y-81), and the Excellence Foundation of BUAA for Ph.D. Students (No. 2017016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwang Dong.

Appendix

Appendix

Fig. 11
figure 11

Variables used in the proof of Lemma 2

Proof of Lemma 2

Inspired by [40], geometric arguments are used in the proof of Lemma 2. Note that \(Re (\rho ) < 0\), and any \(\rho \) located in the third quadrant can be regarded as a complex conjugate of \(\rho \) located in the second quadrant. Consequently, we only need to consider \(\rho \) located in the second quadrant of the complex plane. The variables in Fig. 11 are given as follows

$$\begin{aligned}&\left\{ {\begin{array}{*{20}{c}} \begin{aligned} &{}{{\xi _1} = {k_c}\beta \rho }\\ &{}{{\xi _2} = \sqrt{{{\left( {{k_c}\beta \rho } \right) }^2} + 4{k_c}\rho } } \end{aligned} \end{array}} \right. \end{aligned}$$
(A1)
$$\begin{aligned}&\left\{ {\begin{array}{*{20}{c}} \begin{aligned} &{}{{\zeta _1} = {k_c}\beta \rho - {k_c}\alpha }\\ &{}{{\zeta _2} = \sqrt{{{\left( {{k_c}\beta \rho - {k_c}\alpha } \right) }^2} + 4{k_c}\rho } } \end{aligned} \end{array}} \right. \end{aligned}$$
(A2)
$$\begin{aligned}&\left\{ {\begin{array}{*{20}{c}} \begin{aligned} &{}{{\chi _1} = {{\left( {{k_c}\beta \rho } \right) }^2}}\\ &{}{{\chi _2} = {{\left( {{k_c}\beta \rho } \right) }^2} + 4{k_c}\rho }\\ &{}{{\chi _3} = 4{k_c}\rho } \end{aligned} \end{array}} \right. \end{aligned}$$
(A3)
$$\begin{aligned}&\left\{ {\begin{array}{*{20}{c}} \begin{aligned} &{}{{\delta _1} = {{\left( {{k_c}\beta \rho - {k_c}\alpha } \right) }^2}}\\ &{}{{\delta _2} = {{\left( {{k_c}\beta \rho - {k_c}\alpha } \right) }^2} + 4{k_c}\rho }\\ &{}{{\delta _3} = 4{k_c}\rho } \end{aligned} \end{array}} \right. \end{aligned}$$
(A4)

In the following, it will be verified that if \({k_c} > 0\), \(Re \left( \rho \right) < 0\), \(\alpha \ge 0\) and

$$\begin{aligned} \beta > \sqrt{\frac{2}{{{k_c}\left| \rho \right| \cos \left( {{{\tan }^{ - 1}}\frac{{\hbox { Im } (\rho )}}{{ - Re(\rho )}}} \right) }}} \end{aligned}$$

then

$$\begin{aligned}&Re ({\lambda _ \pm }) \\&\quad = Re \left( {\frac{{{k_c}\beta \rho - {k_c}\alpha \pm \sqrt{{{\left( {{k_c}\beta \rho - {k_c}\alpha } \right) }^2} + 4{k_c}\rho } }}{2}} \right) < 0 \end{aligned}$$

The following two cases will be studied.

  1. (i)

    \(\alpha = 0\)

Considering \(\rho \) locates in the second quadrant of the complex plane, \(Re({\lambda _ \pm }) = Re \left( {{\xi _1} \pm {\xi _2}} \right) < 0\) can be verified by showing that \(Re ({\xi _2}) < Re ({\xi _1})\). To cope with this, the triangle composed of \({\chi _1}\), \({\chi _2}\) and \({\chi _3}\) is first considered. From Fig. 11, \({\xi _1}\) and \({\chi _1}\) can be expressed in polar coordinates as \(\left( {\left| {{\xi _1}} \right| ,\arg ({\xi _1})} \right) \) and \(\left( {\left| {{\chi _1}} \right| ,\arg ({\chi _1})} \right) \), respectively. Note that \({\gamma _1} = \arg ({\xi _1})\) and \({\gamma _1} + {\varphi _2} = \arg ({\xi _1}) + {\gamma _2} = \pi \), one obtains \({\varphi _2} = {\gamma _2}\), meaning that

$$\begin{aligned} {\varphi _2} = {\tan ^{ - 1}}\frac{{\hbox { Im } (\rho )}}{{ - Re(\rho )}} \end{aligned}$$
(A5)

Based on the law of cosines, one knows

$$\begin{aligned} {\left| {{\chi _2}} \right| ^2} = {\left| {{\chi _1}} \right| ^2} + {\left| {{\chi _3}} \right| ^2} - 2\left| {{\chi _1}} \right| \left| {{\chi _3}} \right| \cos {\varphi _2} \end{aligned}$$
(A6)

Meanwhile, it can be verified from Eqs. (A1), (A3) and (A5) that if \({k_c} > 0\), \(Re \left( \rho \right) < 0\), \(\alpha \ge 0\) and

$$\begin{aligned} \beta > \sqrt{\frac{2}{{{k_c}\left| \rho \right| \cos \left( {{{\tan }^{ - 1}}\frac{{\hbox { Im } (\rho )}}{{ - Re(\rho )}}} \right) }}} \end{aligned}$$

then

$$\begin{aligned} {\left| {{\chi _3}} \right| ^2} - 2\left| {{\chi _1}} \right| \left| {{\chi _3}} \right| \cos {\varphi _2} < 0 \end{aligned}$$
(A7)

Substitute Eqs. (A7) into (A6), one obtains \(\left| {{\chi _2}} \right| < \left| {{\chi _1}} \right| \), that is

$$\begin{aligned} \left| {{\xi _2}} \right| < \left| {{\xi _1}} \right| \end{aligned}$$
(A8)

Furthermore, note that \({\chi _2} = {\chi _1} + {\chi _3}\), and \({\chi _3}\) locates in the second quadrant, one has \(\arg ({\chi _2}) < \arg ({\chi _1})\), meaning that

$$\begin{aligned} \arg ({\xi _2}) < \arg ({\xi _1}) \end{aligned}$$
(A9)

Thus, based on Eqs. (A8) and (A9), one knows

$$\begin{aligned} Re \left( {{\lambda _ \pm }} \right)= & {} Re \left( {\frac{{{\xi _1} \pm {\xi _2}}}{2}} \right) \\= & {} Re \left( {\frac{{{k_c}\beta \rho \pm \sqrt{{{\left( {{k_c}\beta \rho } \right) }^2} + 4{k_c}\rho } }}{2}} \right) < 0 \end{aligned}$$
  1. (ii)

    \(\alpha > 0\)

This case is similar to the case of \(\alpha = 0\). \(Re \left( {{\zeta _1} \pm {\zeta _2}} \right) < 0\) can be verified by showing that \(Re ({\zeta _2}) < Re ({\zeta _1})\). From Fig. 11, \({\xi _1}\), \({\zeta _1}\), \({\chi _1}\) and \({\delta _1}\) can be expressed in polar coordinates as \(\left( {\left| {{\xi _1}} \right| ,\arg ({\xi _1})} \right) \), \(\left( {\left| {{\zeta _1}} \right| ,\arg ({\zeta _1})} \right) \), \(\left( {\left| {{\chi _1}} \right| ,\arg ({\chi _1})} \right) \) and \(\left( {\left| {{\delta _1}} \right| ,\arg ({\delta _1})} \right) \). Based on Eqs. (A1)–(A4), one can obtain that \(\left| {{\chi _1}} \right| = {\left| {{\xi _1}} \right| ^2}\), \(\left| {{\delta _1}} \right| = {\left| {{\zeta _1}} \right| ^2}\), \(\arg ({\chi _1}) = 2\arg ({\xi _1})\) and \(\arg ({\delta _1}) = 2\arg ({\zeta _1})\). Since \(\alpha> 0, {k_c} > 0\) and \({\zeta _1} = {\xi _1} - {k_c}\alpha \), one gets \(\arg ({\zeta _1}) > \arg ({\xi _1})\), meaning that \(\arg ({\delta _1}) > \arg ({\chi _1})\). Furthermore, note that \({\chi _3} = {\delta _3} = 4{k_c}\rho \), one can obtain \({\psi _2} < {\varphi _2}\). From Fig. 11, by comparing the triangles composed of \({\chi _1},{\chi _2},{\chi _3}\) and \({\delta _1},{\delta _2},{\delta _3}\), it can be verified that \(\left| {{\delta _2}} \right| < \left| {{\delta _1}} \right| \). Then, via an analysis similar to that described in the case of \(\alpha = 0\), one knows

$$\begin{aligned} Re \left( {{\lambda _ \pm }} \right)= & {} Re \left( {\frac{{{\zeta _1} \pm {\zeta _2}}}{2}} \right) \\= & {} Re \left( {\frac{{{k_c}\beta \rho - \alpha {k_c} \pm \sqrt{{{\left( {{k_c}\beta \rho - \alpha {k_c}} \right) }^2} + 4{k_c}\rho } }}{2}} \right) \\< & {} 0 \end{aligned}$$

The proof of Lemma 2 is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Dong, X., Liang, Z. et al. Distributed group cooperative guidance for multiple missiles with fixed and switching directed communication topologies. Nonlinear Dyn 90, 2507–2523 (2017). https://doi.org/10.1007/s11071-017-3816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3816-3

Keywords

Navigation