Skip to main content
Log in

Chimera states in ensembles of bistable elements with regular and chaotic dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider ensembles of bistable elements with nonlocal interaction. It is shown that the bistability of units in the case of nonlocal interaction leads to the formation of chimera structures of a special type, which we have called double-well chimeras. Their distinctive feature consists in the formation of incoherence clusters with an irregular distribution of elements between two attractive sets existing in an individual element (two “potential wells”). Ensembles of different bistable units are considered, namely ensembles of cubic maps, FitzHugh–Nagumo oscillators in the regime of two stable equilibrium points and Chua’s circuits. The spatiotemporal behavior of the ensembles is studied in the cases of regular and chaotic dynamics in time, and different types of chimera structures are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gibbs, H.M.: Optical Bistability: Controlling Light with Light. Academic Press, Orlando (1985)

    Google Scholar 

  2. Haönggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  MathSciNet  Google Scholar 

  3. Madan, R.N.: Chuas Circuit : A Paradigm for Chaos. World Scientific, Singapore (1993)

    Book  Google Scholar 

  4. Kramers, H.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  5. Schlögl, F.: Chemical reaction models for nonequilibrium phase-transitions. Z. Phys. 253, 147–161 (1972)

    Article  Google Scholar 

  6. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  7. Izhikevich, E.M.: Dynamical Systems in Neuroscience. The MIT press, Cambridge (2007)

    Google Scholar 

  8. May, R.M.: Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977)

    Article  Google Scholar 

  9. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 14, 453–457 (1981)

    Article  MathSciNet  Google Scholar 

  10. Guttal, V., Jayaprakash, C.: Impact of noise on bistable ecological systems. Ecol. Model. 201, 420–428 (2007)

    Article  Google Scholar 

  11. Benzi, R.: Stochastic resonance: from climate to biology. Nonlinear Process. Geophys. 17, 431–441 (2010)

    Article  Google Scholar 

  12. Mikhailov, S., Loskutov, A.: Foundation of Synergetics. Complex Patterns. Springer, Berlin (1995)

    MATH  Google Scholar 

  13. Nekorkin, V.I., Velarde, M.G.: Synergetic Phenomena in Active Lattices. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  14. Comte, J.C., Morfu, S., Marquié, P.: Propagation failure in discrete bistable reactiondiffusion systems: theory and experiments. Phys. Rev. E 64, 027102 (2001)

    Article  Google Scholar 

  15. Bulsara, A.R., In, V., Kho, A., Longhini, P., Palacios, A., Rappel, W.-J., Acebron, J., Baglio, S., Ando, B.: Emergent oscillations in unidirectionally coupled overdamped bistable systems. Phys. Rev. E 70, 036103 (2004)

    Article  Google Scholar 

  16. Shimizu, K., Endo, T., Ueyama, D.: Pulse wave propagation in a large number of coupled bistable oscillators. IEICE Trans. Fundam. Electr. Commun. Comput. Sci. 91(9), 2540–2545 (2008)

    Article  Google Scholar 

  17. Shepelev, I.A., Slepnev, A.V., Vadivasova, T.E.: Different synchronization characteristics of distinct types of traveling waves in a model of active medium with periodic boundary conditions. Commun. Nonlinear. Sci. and Numer. Simul. 38, 206–217 (2016)

    Article  MathSciNet  Google Scholar 

  18. Osipov, G.V., Kurths, J., Zhou, Ch.: Synchronization in Oscillatory Networks. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  19. Nekorkin, V.I., Makarov, V.A.: Spatial chaos in a chain of coupled bistable oscillators. Phys. Rev. Lett. 74, 48194822 (1995)

    Article  Google Scholar 

  20. Nekorkin, V.I., Makarov, V.A., Kazantsev, V.B., Velarde, M.G.: Spatial disorder and pattern formation in lattices of coupled bistable elements. Phys. D 100(3), 330–342 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nekorkin, V.I., Shapin, D.S., Dmitrichev, A.S., Kazantsev, V.B., Binczak, S., Bilbault, J.M.: Heteroclinic contours and self-replicated solitary waves in a reaction-diffusion lattice with complex threshold excitation. Phys. D 237(19), 2463–2475 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonl. Phenom. Complex Syst. 4, 380–385 (2002)

    Google Scholar 

  23. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)

    Article  Google Scholar 

  24. Omelchenko, I., Maistrenko, Y., Hövel, P., Schöll, E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011)

    Article  Google Scholar 

  25. Zakharova, A., Kapeller, M., Schöll, E.: Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112, 154101 (2014)

    Article  Google Scholar 

  26. Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Maistrenko, Y., Sudakov, O., Osir, O., Maistrenko, V.: Chimera states in three dimensions. New J. Phys. 17, 073037 (2015)

    Article  Google Scholar 

  28. Bogomolov, S.A., Slepnev, A.V., Strelkova, G.I., Schöll, E., Anishchenko, V.S.: Mechanisms of appearance of amplitude and phase chimera states in a ring of nonlocally coupled chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 43, 2536 (2016)

    Google Scholar 

  29. Yeldesbay, A., Pikovsky, A., Rosenblum, M.: Chimeralike states in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 112, 144103 (2014)

    Article  Google Scholar 

  30. Sethia, G.C., Sen, A.: Chimera states: the existence criteria revisited. Phys. Rev. Lett. 112, 144101 (2014)

    Article  Google Scholar 

  31. Böhm, F., Zakharova, A., Schöll, E., Lüdge, K.: Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys. Rev. E 91(14), 040901 (2014)

    MathSciNet  Google Scholar 

  32. Laing, C.: Chimera in networks with purely local coupling. Phys. Rev. E 92(5), 050904 (2015)

    Article  Google Scholar 

  33. Clerc, M.G., Coulibaly, S., Ferrë, M.A., Garcïa-Nustes, M.A., Rojas, R.G.: Chimera-type states induced by local coupling. Phys. Rev. E 93, 052204 (2015)

    Article  Google Scholar 

  34. Shepelev, I.A., Zakharova, A., Vadivasova, T.E.: Chimera regimes in a ring of oscillators with local nonlinear interaction. Commun. Nonlinear Sci. Numer. Simul. 44, 277–283 (2016)

    Article  MathSciNet  Google Scholar 

  35. Laing, C.R., Rajendran, K., Kevrekidis, I.G.: Chimeras in random non-complete networks of phase oscillators. Chaos 22, 013132 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hizanidis, J., Panagakou, E., Omelchenko, I., Schöll, E., Hövel, P., Provata, A.: Chimera states in population dynamics: networks with fragmented and hierarchical connectivities. Phys. Rev. E 92, 012915 (2015)

    Article  MathSciNet  Google Scholar 

  37. Ulonska, S., Omelchenko, I., Zakharova, A., Schöll, E.: Chimera states in networks of Van der Pol oscillators with hierarchical connectivities. Chaos 26, 094825 (2016)

    Article  MathSciNet  Google Scholar 

  38. Abrams, D.M., Mirollo, R., Strogatz, S.H., Wiley, D.A.: Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101, 084103 (2008)

    Article  Google Scholar 

  39. Omelchenko, O.E., Wolfrum, M., Yanchuk, S., Maistrenko, Y.L., Sudakov, O.: Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators. Phys. Rev. E 85, 036210 (2012)

    Article  Google Scholar 

  40. Omelchenko, I., Omelchenko, O.E., Hövel, P., Schöll, E.: When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110, 224101 (2013)

    Article  Google Scholar 

  41. Omelchenko, I., Provata, A., Hizanidis, J., Schöll, E., Hövel, P.: Robustness of chimera states for coupled FitzHugh–Nagumo oscillators. Phys. Rev. E 91, 022917 (2015)

    Article  MathSciNet  Google Scholar 

  42. Omelchenko, I., Riemenschneider, B., Hövel, P., Maistrenko, Y., Schöll, E.: Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E 85, 026212 (2012)

    Article  Google Scholar 

  43. Semenova, N., Zakharova, A., Schöll, E., Anishchenko, V.: Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators? Europhys. Lett. 112, 40002 (2015)

    Article  Google Scholar 

  44. Slepnev, A.V., Bukh, A.V., Vadivasova, T.E.: Stationary and non-stationary chimeras in an ensemble of chaotic self-sustained oscillators with inertial nonlinearity. Nonlinear Dyn. 88, 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  45. Semenova, N., Zakharova, A., Anishchenko, V., Schöll, E.: Coherence-resonance chimeras in a network of excitable elements. Phys. Rev. Lett. 117, 014102 (2016)

    Article  Google Scholar 

  46. Banerjee, T., Dutta, P.S., Zakharova, A., Schöll, E.: Chimera patterns induced by distance-dependent power-law coupling in ecological networks. Phys. Rev. E. 94, 032206 (2016)

    Article  Google Scholar 

  47. Dudkowski, D., Maistrenko, Y., Kapitaniak, T.: Different types of chimera states: an interplay between spatial and dynamical chaos. Phys. Rev. E 90, 032920 (2014)

    Article  Google Scholar 

  48. Mishra, A., Hens, Ch., Bose, M., Roy, P.K., Dana, S.K.: Chimeralike states in a network of oscillators under attractive and repulsive global coupling. Phys. Rev. E 92, 062920 (2015)

    Article  Google Scholar 

  49. Shepelev, I.A., Vadivasova, T.E., Strelkova, G.I., Anishchenko, V.S.: New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction. Phys. Lett. A 381(16), 1398–1404 (2017)

    Article  MathSciNet  Google Scholar 

  50. Scjolding, H., Branner-Jorgensen, B., Christiansen, P.L., Jensen, H.E.: Bifurcations in discrete dynamical systems with cubic maps. SIAM J. Appl. Math. 43(3), 520–534 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  51. Anishchenko, V.S.: Dynamical Chaos—Models and Experiments, vol. 8. World Scientific, Singapore (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

Sections 2 and 4 were supported by the Russian Science Foundation (Grant No. 16-12-10175). Sections 1 and 3 were supported by the Russian Science Foundation (Grant No. 16-12-10175). This research was partly supported in the framework of SFB910. I. A. Sh. acknowledge support from the Russian Science Foundation (Grant No. 16-12-10175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Shepelev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepelev, I.A., Bukh, A.V., Strelkova, G.I. et al. Chimera states in ensembles of bistable elements with regular and chaotic dynamics. Nonlinear Dyn 90, 2317–2330 (2017). https://doi.org/10.1007/s11071-017-3805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3805-6

Keywords

Mathematics Subject Classification

Navigation