Skip to main content
Log in

The collective bursting dynamics in a modular neuronal network with synaptic plasticity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, how the synaptic plasticity influences the collective bursting dynamics in a modular neuronal network is numerically investigated. The synaptic plasticity is described by a modified Oja’s learning rule. The modular network is composed of some sub-networks, each of them having small-world characteristic. The result indicates that bursting synchronization can be induced by large coupling strength between different neurons, which is robust to the local dynamical parameter of individual neurons. With the emergence of synaptic plasticity, the bursting dynamics in the modular neuronal network, particularly the excitability and synchronizability of bursting neurons, is detected to be changed significantly. In detail, upon increasing synaptic learning rate, the excitability of bursting neurons is greatly enhanced; on the contrary, bursting synchronization between interacted neurons is a little suppressed by the increase in synaptic learning rate. The presented findings could be helpful to understand the important role of synaptic plasticity on neural coding in realistic neuronal network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001)

    Article  Google Scholar 

  2. Osipov, G.V., Kurths, J., Zhou, C.S.: Synchronization in oscillatory networks. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  3. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. Comput. Sci. Commun. Dict. 2, 1706–1707 (2001)

    MATH  Google Scholar 

  4. Sun, Z.K., Yang, X.L.: Generating and enhancing lag synchronization of chaotic systems by white noise. Chaos 21, 033114 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Article  Google Scholar 

  6. Rossello, J.L., Canals, V., Oliver, A., Morro, A.: Studying the role of synchronized and chaotic and spiking neural ensembles in neural information processing. Int. J. Neural Syst. 24, 146–167 (2014)

    Article  Google Scholar 

  7. Fries, P., Nikolić, D., Singer, W.: The gamma cycle. Trends Neurosci. 30, 309–316 (2007)

    Article  Google Scholar 

  8. Tang, J., Ma, J., Yi, M., Xia, H., Yang, X.Q.: Delay and diversity-induced synchronization transitions in a small-world neuronal network. Phys. Rev. E 83, 046207 (2011)

    Article  Google Scholar 

  9. Wang, Q.Y., Aleksandra, Murks, Matjaz, P., Lu, Q.S.: Taming desynchronized bursting with delays in the macaque cortical network. Chin. Phys. B 20, 40504–40505 (2011)

    Article  Google Scholar 

  10. Wang, Q., Chen, G., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. Plos One 6, e15851 (2011)

    Article  Google Scholar 

  11. Guo, D., Wang, Q., Perc, M.: Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys. Rev. E 85, 878–896 (2012)

    Google Scholar 

  12. Burić, N., Todorović, K., Vasović, N.: Influence of noise on dynamics of coupled bursters. Phys. Rev. E 75, 067204 (2007)

    Article  Google Scholar 

  13. Zheng, Y.H., Lu, Q.S.: Spatiotemporal patterns and chaotic burst synchronization in a small world neuronal network. Phys. Lett. A 387, 3719–3728 (2008)

    Google Scholar 

  14. Guo, D., Chen, M., Perc, M., Wu, S., Xia, C., Zhang, Y.: Firing regulation of fast-spiking interneurons by autaptic inhibition. EPL 114, 30001 (2016)

    Article  Google Scholar 

  15. Guo, D., Wu, S., Chen, M., Perc, M., Zhang, Y., Ma, J.: Regulation of irregular neuronal firing by autaptic transmission. Sci. Rep. 6, 26096 (2016)

    Article  Google Scholar 

  16. Hilgetag, C.C., Burns, G.A., O’neill, M.A., Scannell, J.W., Young, M.P.: Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philos. Trans. R. Soc. Lond. Ser. B 355, 91–92 (2000)

    Article  Google Scholar 

  17. Zamora-Lopez, G., Zhou, C.S., Kurths, J.: Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos 19, 015117 (2009)

    Article  Google Scholar 

  18. Yang, X.L., Wang, M.M.: The evolution to global burst synchronization in a modular neuronal network. Mod. Phys. Lett. B 30, 1650210 (2016)

    Article  MathSciNet  Google Scholar 

  19. Batista, C.A.S., Lameu, E.L., Batista, A.M., Lopes, S.R., Pereira, T., Zamora-López, G., Kurths, J., Viana, R.L.: Phase synchronization of bursting neurons in clustered small-world networks. Phys. Rev. E 86, 016211 (2012)

    Article  Google Scholar 

  20. Sun, X.J., Lei, J.Z., Perc, M., Kurths, J., Chen, G.R.: Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21, 016110 (2011)

    Article  Google Scholar 

  21. Sigurdsson, T., Doyère, V., Cain, C.K., Ledoux, J.E.: Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52, 215–227 (2007)

    Article  Google Scholar 

  22. Martin, S.J., Grimwood, P.D., Morris, R.G.: Synaptic plasticity and memory: an evaluation of the hypothesis. Ann. Rev. Neurosci. 23, 649 (2000)

    Article  Google Scholar 

  23. Han, F., Wang, Z.J., Fang, J.A.: Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity. Int. J. Neural Syst. 21, 415–425 (2011)

    Article  Google Scholar 

  24. Zheng, H.Y., Luo, X.S., Wu, L.Z.: Excitement and optimality properties of small-world biological neural networks with updated weights. Acta Phys. Sin. 57, 3380–3384 (2008). (in Chinese)

    MATH  Google Scholar 

  25. Pérez, T., Uchida, A.: Reliability and synchronization in a delay-coupled neuronal network with synaptic plasticity. Phys. Rev. E 83, 0619151 (2011)

    Article  Google Scholar 

  26. Oja, E.: A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Robert, S., Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (2010)

    Google Scholar 

  28. Munakata, Y., Pfaffly, J.: Hebbian learning and development. Develop. Sci. 7, 141–148 (2004)

    Article  Google Scholar 

  29. Oja, E.: Oja learning rule. Scholarpedia 3, 3612 (2008)

    Article  Google Scholar 

  30. Jankovic, M., Martinez, P., Chen, Z., Cichocki, A.: Modified Modulated Hebb-Oja Learning Rule: A Method for Biologically Plausible Principal Component Analysis. Springer, Berlin (2008)

    Google Scholar 

  31. Li, C.G., Liao, X.F., Yu, J.B.: Generating chaos by Oja’s rule. Neurocomputing 55, 731–738 (2003)

  32. Han, F., Lu, Q., Meng, X., Wang, J.: Synchronization of Small-World Neuronal Networks with Synapse Plasticity. Springer, Netherlands (2011)

    Book  Google Scholar 

  33. Kube, K., Herzog, A., Michaelis, B., Al-Hamadi, A., de Lima, A.D., Voigt, T.: Spike-timing-dependent plasticity in small-world networks. Neurocomputing 71, 1694–1704 (2008)

    Article  Google Scholar 

  34. Izhikevich, E., Desai, N.: Relating STDP to BCM. Neural Comput. 15, 11–23 (2003)

    Article  MATH  Google Scholar 

  35. Zhang, H., Wang, Q., Perc, M., Chen, G.: Synaptic plasticity induced transition of spike propagation in neuronal networks. Commun. Nonlinear Sci. Numer. Simul. 18, 601–615 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263, 341–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65, 041922–041922 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, W., Wu, B., Zhang, Z.J., Dou, Y., Rao, Z.R., Chen, Y.R., Duan, S.M.: Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 50, 401–414 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant No. 11572180) and the Fundamental Funds Research for the Central Universities (Grant Nos. GK201602009, GK201701001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X.L., Wang, J.Y. & Sun, Z.K. The collective bursting dynamics in a modular neuronal network with synaptic plasticity. Nonlinear Dyn 89, 2593–2602 (2017). https://doi.org/10.1007/s11071-017-3606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3606-y

Keywords

Navigation