Skip to main content
Log in

Finite time stability of semilinear delay differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study finite time stability for two classes of nonlinear delay differential equations, one is equation with a nonlinearity independent of delay and the other is equation with a nonlinearity depending on delay. Based on the solution structure involving delayed matrix exponential, sufficient conditions for the finite time stability results are derived by utilizing the properties of delayed matrix exponential and Gronwall integral inequalities under linear growth conditions for the nonlinear terms. Finally, we demonstrate the validity of designed method by using two numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dorato, P.: Short time stability in linear time-varying systems. In: Proceedings of the IRE International Convention Record, Part 4, pp. 83–87 (1961)

  2. Weiss, L., Infante, E.F.: On the stability of systems defined over a finite-time interval. Proc. Am. Math. Inst. 54, 44–48 (1965)

    MathSciNet  MATH  Google Scholar 

  3. Weiss, L., Infante, E.F.: Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 12, 54–59 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Weiss, L.: Converse theorems for finite-time stability. SIAM J. Appl. Math. 16, 1319–1324 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amato, F., Ariola, M., Cosentino, C.: Robust finite-time stabilisation of uncertain linear systems. Int. J. Control 84, 2117–2127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lazarević, M.P., Debeljković, D.L.: Finite-time stability analysis of linear autonomous fractional order systems with delayed state. Asian J. Control 4, 440–447 (2005)

    MathSciNet  Google Scholar 

  7. Lazarević, M.P.: Finite-time stability analysis of \(PD^{\alpha }\) fractional control of robotic time-delay systems. Mech. Res. Commun. 33, 269–279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lazarević, M.P., Spasić, A.M.: Finite-time stability analysis of fractional order time-delay system: Grownwall’s approach. Math. Comput. Model. 49, 475–481 (2009)

    Article  MATH  Google Scholar 

  9. Yang, X., Cao, J.: Finite-time stochastic synchronization of complex networks. Appl. Math. Model. 34, 3631–3641 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Debeljković, D., Stojanović, S., Jovanović, A.: Further results on finite time and practical stability of linear continuous time delay systems. FME Trans. 41, 241–249 (2013)

    Google Scholar 

  11. Debeljković, D., Stojanović, S., Jovanović, A.: Finite-time stability of continuous time delay systems: Lyapunov-like approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 10, 135–150 (2013)

    Google Scholar 

  12. Wang, Q., Lu, D.C., Fang, Y.Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, X., Song, Q., Liu, Y., et al.: Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152, 19–26 (2015)

    Article  Google Scholar 

  14. Li, D., Cao, J.: Global finite-time output feedback synchronization for a class of high-order nonlinear systems. Nonlinear Dyn. 82, 1027–1037 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, Y., Cao, J., Alofi, A., Abdullah, A.L.M., et al.: Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay. Neural Netw. 69, 135–143 (2015)

    Article  Google Scholar 

  16. Wu, R., Lu, Y., Chen, L.: Finite-time stability of fractional delayed neural networks. Neurocomputing 149, 700–707 (2015)

    Article  Google Scholar 

  17. Wang, L., Shen, Y., Ding, Z.: Finite time stabilization of delayed neural networks. Neural Netw. 70, 74–80 (2015)

    Article  Google Scholar 

  18. Phat, V.N., Muoi, N.H., Bulatov, M.V.: Robust finite-time stability of linear differential-algebraic delay equations. Linear Algebra Appl. 487, 146–157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, L., Liu, C., Wu, R., et al.: Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Comput. Appl. 2016(27), 549–556 (2016)

    Article  Google Scholar 

  20. Wen, Y., Zhou, X., Zhang, Z., Liu, S.: Lyapunov method for nonlinear fractional differential systems with delay. Nonlinear Dyn. 82, 1015–1025 (2015)

  21. Li, M., Wang, J.: Finite time stability of fractional delay differential equations. Appl. Math. Lett. 64, 170–176 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khusainov, D.Y., Shuklin, G.V.: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Žilina 17, 101–108 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Khusainov, D.Y., Diblík, J., Růžičková, M., Lukáčová, J.: Representation of a solution of the cauchy problem for an oscillating system with pure delay. Nonlinear Oscil. 11, 261–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khusainov, D.Y., Shuklin, G.V.: Relative controllability in systems with pure delay. Int. J. Appl. Math. 2, 210–221 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Medved, M., Pospišil, M., Škripková, L.: Stability and the nonexistence of blowing-up solutions of nonlinear delay systems with linear parts defined by permutable matrices. Nonlinear Anal. 74, 3903–3911 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Medved, M., Pospišil, M.: Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. 75, 3348–3363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Diblík, J., Fečkan, M., Pospišil, M.: Representation of a solution of the cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 65, 58–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Diblík, J., Khusainov, D.Y., Baštinec, J., Sirenko, A.S.: Exponential stability of linear discrete systems with constant coefficients and single delay. Appl. Math. Lett. 51, 68–73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Diblík, J., Khusainov, D.Y.: Representation of solutions of linear discrete systems with constant coefficients and pure delay. Adv. Differ. Equ. 2006, 1–13 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Diblík, J., Khusainov, D.Y.: Representation of solutions of discrete delayed system \(x(k+1)=Ax(k)+Bx(k-m)+f(k)\) with commutative matrices. J. Math. Anal. Appl. 318, 63–76 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Diblík, J., Morávková, B.: Discrete matrix delayed exponential for two delays and its property. Adv. Differ. Equ. 2013, 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  32. Boichuk, A., Diblík, J., Khusainov, D., Råžičková, M.: Fredholms boundary-value problems for differential systems with a single delay. Nonlinear Anal. 72, 2251–2258 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Luo, Z., Wang, J.: Finite time stability analysis of systems based on delayed exponential matrix. J. Appl. Math. Comput. (2016). doi:10.1007/s12190-016-1039-2

    Google Scholar 

  34. Corduneanu, C.: Principles of differential and integral equations. Allyn and Bacon, Boston (1971)

    MATH  Google Scholar 

  35. Ye, H.Y., Gao, J.M.: Henry-Gronwall type retarded integral inequalities and their applications to fractional differential equations with delay. Appl. Math. Comput. 218, 4152–4160 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thanks the referees for their careful reading of the manuscript and insightful comments, which help to improve the quality of the paper. The authors thank the help from the editor too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

This work is partially supported by NNSF (No. 11661016), Training Object of High Level and Innovative Talents of Guizhou Province [(2016)4006], and Unite Foundation of Guizhou Province ([2015]7640).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Wei, W. & Wang, J. Finite time stability of semilinear delay differential equations. Nonlinear Dyn 89, 713–722 (2017). https://doi.org/10.1007/s11071-017-3481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3481-6

Keywords

Navigation