Skip to main content
Log in

The nonautonomous N-soliton solutions for coupled nonlinear Schrödinger equation with arbitrary time-dependent potential

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigated the coupled nonlinear Schrödinger equations with arbitrary linear time-dependent potential, which govern the soliton dynamics in quasi-one-dimensional two-component Bose–Einstein condensates. Hirota method is developed carefully for applying into this model, and we obtain the exact nonautonomous superposition (NASP) N-soliton solutions analytically. Through manipulating the time-dependent potential, the different-type NASP solitons are reported. In particular, these new soliton solutions are the superposition of dark and bright solitons, so the general bright-bright and bright-dark (or dark-bright) soliton solutions can be obtained easily. A detailed analysis for the asymptotic behavior of solitons demonstrates that the interactions of S-type two solitons and periodic-type three solitons are all elastic in each component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li, B., Zhang, X.F., Li, Y.Q., Liu, W.M.: Propagation and interaction of matter-wave solitons in Bose-Einstein condensates with time-dependent scattering length and varying potentials. Phys. B: At. Mol. Opt. Phys. 44, 175301 (2011)

    Article  Google Scholar 

  2. Zhang, D.J.: The N-soliton solutions for the modified KdV equation with self-consistent sources. J. Phys. Soc. Jpn. 71, 11 (2002)

    Article  MathSciNet  Google Scholar 

  3. Zhou, Q., Liu, L., Zhang, H., Mirzazadeh, M., Bhrawy, A., Zerrad, E., Moshokoa, S., Biswas, A.: Dark and singular optical solitons with competing nonlocal nonlinearities. Opt. Appl. 46, 79–86 (2016)

    Google Scholar 

  4. Zhou, Q., Mirzazadeh, M., Zerrad, E., Biswas, A., Belic, M.: Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients. J. Mod. Optic. 63, 950–954 (2016)

    Article  Google Scholar 

  5. Zhang, X.F., Hu, X.H., Liu, X.X., Liu, W.M.: Vector solitons in two-component Bose-Einstein condensates with tunable interactions and harmonic potential. Phys. Rev. A 79, 033630 (2009)

    Article  Google Scholar 

  6. Dum, R., Cirac, J.I., Lewenstein, M., Zoller, P.: Creation of dark solitons and vortices in Bose-Einstein condensates. Phys. Rev. Lett. 80, 2972 (1998)

    Article  Google Scholar 

  7. Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K.: Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83, 5198 (1999)

    Article  Google Scholar 

  8. Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Formation and propagation of matter-wave soliton trains. Nature 417, 150 (2002)

    Article  Google Scholar 

  9. Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a matter-wave bright soliton. Science 296, 1290 (2002)

    Article  Google Scholar 

  10. Khawaja, Al: U., Stoof, H.T.C., Hulet, R.G., Strecker, K.E., Partridge, G.B.: Bright soliton trains of trapped Bose-Einstein condensates. Phys. Rev. Lett 89, 200404 (2002)

    Article  Google Scholar 

  11. Muryshev, A.E., van, : Linden van den Heuvell, H.B., Shlyapnikov, G.V.: Stability of standing matter waves in a trap. Phys. Rev. A 60, R2665(R) (1999)

  12. Wang, P., Feng, L., Shang, T., Guo, L.X., Cheng, G.H., Du, Y.J.: Analytical soliton solutions for the cubic-quintic nonlinear Schrödinger equation with Raman effect in the nonuniform management systems. Nonlinear Dyn. 79, 387–395 (2015)

    Article  Google Scholar 

  13. Denschlag, J., Simsarian, J.E., Feder, D.L., Clark, C.W., Collins, L.A., Cubizolles, J., Deng, L., Hagley, E.W., Helmerson, K., Reinhardt, W.P., Rolston, S.L., Schneider, B.I., Phillips, W.D.: Generating Solitons by Phase Engineering of a Bose-Einstein Condensate. Science 287, 97 (2000)

    Article  Google Scholar 

  14. Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N.: Bose-Einstein condensates in standing waves: the cubic nonlinear Schröinger equation with a periodic potential. Phys. Rev. Lett. 86, 1402 (2001)

    Article  Google Scholar 

  15. Meng, G.Q., Gao, Y.T., Yu, X., Shen, Y.J., Qin, Y.: Multi-soliton solutions for the coupled nonlinear Schrödinger-type equations. Nonlinear Dyn. 70, 609–617 (2012)

    Article  Google Scholar 

  16. Wang, S.J., Jia, C.L., Zhao, D., Luo, H.G., An, J.H.: Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate. Phys. Rev. A 68, 015601 (2003)

    Article  Google Scholar 

  17. Li, Z.D., He, P.B., Li, L., Liang, J.Q., Liu, W.M.: Magnetic soliton and soliton collisions of spinor Bose-Einstein condensates in an optical lattice. Phys. Rev. A 71, 053611 (2005)

    Article  Google Scholar 

  18. Li, L., Li, Z.D., Malomed, B.A., Mihalache, D., Liu, W.M.: Exact soliton solutions and nonlinear modulation instability in spinor Bose-Einstein condensates. Phys. Rev. A 72, 033611 (2005)

    Article  Google Scholar 

  19. Esry, B.D., Greene, C.H., Burke, J.P., Bohn, J.L.: Hartree-Fock theory for double condensates. Phys. Rev. Lett. 78, 3594 (1997)

    Article  Google Scholar 

  20. Öhberg, P., Stenholm, S.: Coupled eigenmodes in a two-component Bose-Einstein condensate. J. Phys. B 32, 1959 (1999)

    Article  Google Scholar 

  21. Wang, D.S., Hu, X.H., Liu, W.M.: Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities. Phys. Rev. A 82, 023612 (2010)

    Article  Google Scholar 

  22. Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221–1230 (2015)

    Article  MathSciNet  Google Scholar 

  23. Wang, X.M., Zhang, L.L.: The superposition solitons for 3-coupled nonlinear Schrödinger equations. Commun. Nonlinear Sci. Numer. Simulat. 42, 93 (2017)

    Article  Google Scholar 

  24. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, Q., Zhong, Y., Mirzazadeh, M., Bhrawy, A.H., Zerrad, E., Biswas, A.: Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. Wave Random Complex 26, 204–210 (2016)

    Article  MathSciNet  Google Scholar 

  26. Krishnan, E.V., Ghabshi, M.A., Mirzazadeh, M., Bhrawy, A.H., Biswas, A., Belic, M.: Optical solitons for quadratic law nonlinearity with five integration schemes. J, Comput. Theor. Nanos 12, 4809–4821 (2015)

  27. Afanasyev, V.V., Kivshar, Y.S., Konotop, V.V., Serkin, V.N.: Dynamics of coupled dark and bright optical solitons. Opt. Lett. 14, 805–807 (1989)

    Article  Google Scholar 

  28. Afanasjev, V.V., Dianov, E.M., Serkin, V.N.: Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation. IEEE J. Quantum Elect. 25, 2656–2664 (1989)

    Article  Google Scholar 

  29. Kivshar, Y.S., Anderson, D., Höök, A., Lisak, M., Afanasjev, A.A., Serkin, V.N.: Symbiotic optical solitons and modulational instability. Phys. Scripta 44, 195–202 (1991)

    Article  Google Scholar 

  30. Hoefer, M.A., Chang, J.J., Hamner, C., Engels, P.: Dark-dark solitons and modulational instability in miscible two-component Bose-Einstein condensates. Phys. Rev. A 84, 041605(R) (2011)

    Article  Google Scholar 

  31. Kannal, T., Babu Mareeswaran, R., Tsitoura, F., Nistazakis, H.E., Frantzeskakis, D.J.: Non-autonomous bright-dark solitons and Rabi oscillations in multi-component Bose-Einstein condensates. J. Phys. A-Math. Theor 46, 47 (2013)

  32. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502–4505 (2000)

    Article  Google Scholar 

  33. Serkin, V.N., Hasegawa, A.: Soliton management in the nonlinear Schrödinger equation model with varying dispersion, nonlinearity, and gain. JETP Lett. 72, 89–92 (2000)

    Article  Google Scholar 

  34. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  35. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons. J. Mod. Optic. 57, 1456–1472 (2010)

  36. Song, C.S., Li, J., Zong, F.D.: Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose-Einstein condensates. Chin. Phys. B 21, 020306 (2012)

    Article  Google Scholar 

  37. Carr, L.D., Clark, C.W., Reinhardt, W.P.: Stationary solutions of the one-dimensional nonlinear Schrödinger equation. II. Case of attractive nonlinearity. Phys. Rev. A 62, 063611 (2000)

    Article  Google Scholar 

  38. Li, Z.J., Hai, W.H., Deng, Y.: Nonautonomous deformed solitons in a Bose-Einstein condensate. Chin. Phys. B 22, 090505 (2013)

    Article  Google Scholar 

  39. Li, Q.Y., Wang, S.J., Li, Z.D.: Nonautonomous dark soliton solutions in two-component Bose-Einstein condensates with a linear time-dependent potential. Chin. Phys. B 23, 060310 (2014)

    Article  Google Scholar 

  40. Konotop, V.V., Chubykalo, O.A., Vzquez, L.: Dynamics and interaction of solitons on an integrable inhomogeneous lattice. Phys. Rev. E 48, 563 (1993)

    Article  Google Scholar 

  41. Lü, X., Tian, B., Xu, T., Cai, K.J., Liu, W.J.: Analytical study of the nonlinear Schrödinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose-Einstein condensates. Ann. Phys. 323, 2554 (2008)

    Article  MATH  Google Scholar 

  42. Li, Z.D., Li, Q.Y., Hu, X.H., Zheng, Z.X., Sun, Y.B.: Hirota method for the nonlinear Schrödinger equation with an arbitrary linear time-dependent potential. Ann. Phys. 322, 2545 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology). The opening project number is KFJJ16-06M. And it is also supported by the Research Project Supported by Shanxi Scholarship Council of China (No. 2013-043) and Innovation Project of Shanxi Postgraduate Education (No. 2016BY063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XM., Zhang, LL. The nonautonomous N-soliton solutions for coupled nonlinear Schrödinger equation with arbitrary time-dependent potential. Nonlinear Dyn 88, 2291–2302 (2017). https://doi.org/10.1007/s11071-017-3377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3377-5

Keywords

Navigation