Skip to main content
Log in

Can Lyapunov exponent predict critical transitions in biological systems?

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Transitions from one dynamical regime to another one are observed in many complex systems, especially biological ones. It is possible that even a slight perturbation can cause such a transition. It is clear that this can happen to an object when it is close to a tipping point. There is a lot of interest in finding ways to recognize that a tipping point (in which a bifurcation occurs) is near. There is a possibility that in complex systems, a phenomenon known as “critical slowing down” may be used to detect the vicinity of a tipping point. In this paper, we propose Lyapunov exponents as an indicator of “critical slowing down.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Veraart, A.J., Faassen, E.J., Dakos, V., van Nes, E.H., Lürling, M., Scheffer, M.: Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012)

    Google Scholar 

  2. van de Leemput, I.A., Wichers, M., Cramer, A.O., Borsboom, D., Tuerlinckx, F., Kuppens, P., et al.: Critical slowing down as early warning for the onset and termination of depression. Proc. Natl. Acad. Sci. 111, 87–92 (2014)

    Article  Google Scholar 

  3. Dakos, V., Bascompte, J.: Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl. Acad. Sci. 111, 17546–17551 (2014)

    Article  Google Scholar 

  4. Scheffer, M., Carpenter, S.R., Lenton, T.M., Bascompte, J., Brock, W., Dakos, V., et al.: Anticipating critical transitions. Science 338, 344–348 (2012)

    Article  Google Scholar 

  5. Dakos, V., Carpenter, S.R., van Nes, E.H., Scheffer, M.: Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B: Biol. Sci. 370, 20130263 (2015)

    Article  Google Scholar 

  6. Christini, D.J., Collins, J.J.: Controlling nonchaotic neuronal noise using chaos control techniques. Phys. Rev. Lett. 75, 2782 (1995)

    Article  Google Scholar 

  7. Sarbadhikari, S., Chakrabarty, K.: Chaos in the brain: a short review alluding to epilepsy, depression, exercise and lateralization. Med. Eng. Phys. 23, 447–457 (2001)

    Article  Google Scholar 

  8. Hadaeghi, F., Hashemi Golpayegani, M.R., Moradi, K.: Does “crisis-induced intermittency” explain bipolar disorder dynamics? Front. Comput. Neurosci. 7, 116 (2013)

    Google Scholar 

  9. Jafari, S., Baghdadi, G., Golpayegani, S., Towhidkhah, F., Gharibzadeh, S.: Is attention deficit hyperactivity disorder a kind of intermittent chaos? J. Neuropsychiatry Clin. Neurosci. 25, E2 (2013)

    Google Scholar 

  10. Mattei, T.A.: Nonlinear (chaotic) dynamics and fractal analysis: new applications to the study of the microvascularity of gliomas. World Neurosurg. 79, 4–7 (2013)

    Article  Google Scholar 

  11. Elbert, T., Ray, W.J., Kowalik, Z.J., Skinner, J.E., Graf, K.E., Birbaumer, N.: Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol. Rev. 74, 1–47 (1994)

    Google Scholar 

  12. Jafari, S., Ansari, Z., Hashemi Golpayegani, S.M.R., Gharibzadeh, S.: Is attention a “ period window” in the chaotic brain? J. Neuropsychiatry Clin. Neurosci. 25, E05 (2013)

    Article  Google Scholar 

  13. Jafari, S., Baghdadi, G., Hashemi Golpayegani, S.M.R., Towhidkhah, F., Gharibzadeh, S.: Is attention deficit hyperactivity disorder a kind of intermittent chaos? J. Neuropsychiatry Clin. Neurosci. 25, E2 (2013)

    Google Scholar 

  14. Jafari, S., Hashemi Golpayegani, S.M.R., Gharibzadeh, S.: Is there any geometrical information in the nervous system?. Front. Comput. Neurosci. 7 (2013)

  15. Molaie, M., Falahian, R., Gharibzadeh, S., Jafari, S., Sprott, J.C.: Artificial neural networks: powerful tools for modeling chaotic behavior in the nervous system. Front. Comput. Neurosci. 8 (2014)

  16. Falahian, R., Mehdizadeh Dastjerdi, M., Molaie, M., Jafari, S., Gharibzadeh, S.: Artificial neural network-based modeling of brain response to flicker light. Nonlinear Dyn. 81, 1951–1967 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kowalik, Z.J., Elbert, T.: Changes of chaoticness in spontaneous EEG/MEG. Integr. Physiol. Behav. Sci. 29, 270–282 (1994)

    Article  Google Scholar 

  18. Kowalik, Z.J., Wróbel, A., Rydz, A.: Why does the human brain need to be a nonlinear system? Behav. Brain Sci. 19, 302–303 (1996)

    Article  Google Scholar 

  19. Mühlnickel, W., Rendtorff, N., Kowalik, Z.J., Rockstroh, B., Miltner, W., Elbert, T.: Testing the determinism of EEG and MEG. Integr. Physiol. Behav. Sci. 29, 262–269 (1994)

    Article  Google Scholar 

  20. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78, 1213 (2006)

    Article  Google Scholar 

  21. Korn, H., Faure, P.: Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326, 787–840 (2003)

    Article  Google Scholar 

  22. Gong, Y., Ren, W., Shi, X., Xu, J., Hu, S.: Recovering strange attractors from noisy interspike intervals of neuronal firings. Phys. Lett. A 258, 253–262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Elbert, T., Rockstroh, B., Kowalik, Z.J., Hoke, M., Molnar, M., Skinner, J.E., et al.: Chaotic brain activity. Electroencephalogr. Clin. Neurophysiol./Suppl. 44, 441–449 (1995)

    Google Scholar 

  24. Signorini, M.G., Marchetti, F., Cirigioni, A., Cerutti, S.: Nonlinear noise reduction for the analysis of heart rate variability signals in normal and heart transplanted subjects. In: Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE, pp. 1402–1405 (1997)

  25. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, vol. 7. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  26. Patil, D., Hunt, B.R., Kalnay, E., Yorke, J.A., Ott, E.: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett. 86, 5878 (2001)

    Article  Google Scholar 

  27. Herzel, H., Holzfuss, J., Kowalik, Z., Pompe, B., Reuter, R.: Detecting bifurcations in voice signals. In: Kantz, H., Kurths, J., Meyer-Kress, G. (eds.) Nonlinear Analysis of Physiological Data. pp. 325–344. Springer, Berlin (1998)

  28. d’Humieres, D., Beasley, M., Huberman, B., Libchaber, A.: Chaotic states and routes to chaos in the forced pendulum. Phys. Rev. A 26, 3483 (1982)

    Article  Google Scholar 

  29. Cumming, A., Linsay, P.S.: Quasiperiodicity and chaos in a system with three competing frequencies. Phys. Rev. Lett. 60, 2719 (1988)

    Article  MathSciNet  Google Scholar 

  30. Meador, C.-E.E.: Numerical calculation of Lyapunov exponents for three-dimensional systems of ordinary differential equations. Master’s thesis. Marshall University (2011)

  31. Medio, A., Lines, M.: Nonlinear Dynamics: A Primer. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  32. Kowalik, Z., Schnitzler, A., Freund, H.-J., Witte, O.: Local Lyapunov exponents detect epileptic zones in spike-less interictal MEG recordings. Clin. Neurophysiol. 112, 60–67 (2001)

    Article  Google Scholar 

  33. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D: Nonlinear Phenom. 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marhl, M., Perc, M.: Determining the flexibility of regular and chaotic attractors. Chaos Solitons Fractals 28, 822–833 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Perc, M., Marhl, M.: Sensitivity and flexibility of regular and chaotic calcium oscillations. Biophys. Chem. 104, 509–522 (2003)

    Article  MATH  Google Scholar 

  36. Perc, M., Marhl, M.: Local dissipation and coupling properties of cellular oscillators: a case study on calcium oscillations. Bioelectrochemistry 62, 1–10 (2004)

    Article  MATH  Google Scholar 

  37. Perc, M., Marhl, M.: Synchronization of regular and chaotic oscillations: the role of local divergence and the slow passage effect–A case study on calcium oscillations. Int. J. Bifurc. Chaos 14, 2735–2751 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gosak, M., Stožer, A., Markovič, R., Dolenšek, J., Marhl, M., Rupnik, M.S., et al.: The relationship between node degree and dissipation rate in networks of diffusively coupled oscillators and its significance for pancreatic beta cells. Chaos: Interdiscip. J. Nonlinear Sci. 25, 073115 (2015)

    Article  MathSciNet  Google Scholar 

  39. Perc, M., Marhl, M.: Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor. Phys. Rev. E 70, 016204 (2004)

    Article  Google Scholar 

  40. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D: Nonlinear Phenom. 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Elert, G.: The chaos hypertextbook. http://hypertextbook.com/chaos (1999)

  42. Fernández Rodríguez, F., Sosvilla Rivero, S., Andrada Félix, J.: A new test for chaotic dynamics using Lyapunov exponents. FEDEA working paper no. 2003–09. https://ssrn.com/abstract=390380 (2003)

  43. Abarbanel, H.D.: Introduction. In: Analysis of Observed Chaotic Data, pp. 1–12. Springer (1996)

  44. Sprott, J.C.: Chaos and Time-Series Analysis, Oxford University Press, Oxford (2003)

  45. Kodba, S., Perc, M., Marhl, M.: Detecting chaos from a time series. Eur. J. Phys. 26, 205 (2004)

    Article  Google Scholar 

  46. Perc, M.: Visualizing the attraction of strange attractors. Eur. J. Phys. 26, 579 (2005)

    Article  MathSciNet  Google Scholar 

  47. Perc, M.: Introducing nonlinear time series analysis in undergraduate courses. FIZIKA A-ZAGREB- 15, 91 (2006)

    Google Scholar 

  48. Perc, M.: The dynamics of human gait. Eur. J. Phys. 26, 525 (2005)

    Article  MATH  Google Scholar 

  49. Crevier, D.W., Meister, M.: Synchronous period-doubling in flicker vision of salamander and man. J. Neurophysiol. 79, 1869–1878 (1998)

    Google Scholar 

  50. Baghdadi, G., Jafari, S., Sprott, J.C., Towhidkhah, F., Hashemi Golpayegani, S.M.R.: A chaotic model of sustaining attention problem in attention deficit disorder. Commun. Nonlinear Sci. Numer. Simul. 20, 174–185 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Noy-Meir, I.: Stability in simple grazing models: effects of explicit functions. J. Theor. Biol. 71, 347–380 (1978)

    Article  Google Scholar 

  52. Dakos, V., Carpenter, S.R., Brock, W.A., Ellison, A.M., Guttal, V., Ives, A.R., et al.: Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PloS ONE 7, e41010 (2012)

  53. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)

    MATH  Google Scholar 

  54. Hilborn, R.C.: Chaos and Nonlinear Dynamics: An introduction for Scientists and Engineers. Oxford University Press on Demand, Oxford (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Leslie Samuel Smith for the help and edits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarimehr, F., Jafari, S., Hashemi Golpayegani, S.M.R. et al. Can Lyapunov exponent predict critical transitions in biological systems?. Nonlinear Dyn 88, 1493–1500 (2017). https://doi.org/10.1007/s11071-016-3325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3325-9

Keywords

Navigation