Skip to main content
Log in

Bifurcation analysis and solitary-like wave solutions for extended \({{\varvec{(2+1)}}}\)-dimensional Konopelchenko–Dubrovsky equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the bifurcation analysis as well as the sub-equation expansion method will be applied to study the extended \((2+1)\)-dimensional Konopelchenko–Dubrovsky equations. The bifurcation analysis is first used to obtain the existence of traveling wave solutions. Then via the sub-equation expansion method, some new solitary-like wave solutions for each parameter condition are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu, P.B., et al.: Soliton solutions, Bäcklund transformation and Wronskian solutions for the extended \((2+1)\)-dimensional Konopelchenko–Dubrovsky equations in fluid mechanics. Appl. Math. Comput. 218, 2489–2496 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Wazwaz, A.M.: New solitons and kink solutions for the Gardner equation. Commun. Nonlinear Sci. Numer. Simul. 12, 1395–1404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh–coth method. Appl. Math. Comput. 190, 633–640 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Li, L.L., et al.: On a generalized Kadomtsev–Petviashvili equation with variable coefficients via symbolic computation. Phys. Scr. 76, 411–417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Soomere, T.: Interaction of Kadomtsev–Petviashvili solitons with unequal amplitudes. Phys. Lett. A 332, 74–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Khalique, C.M., Adem, A.R.: Exact solutions of a generalized \((3+1)\)-dimensional Kadomtsev–Petviashvili equation using Lie symmetry analysis. Appl. Math. Comput. 216, 2849–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Sun, Z.Y., et al.: Inelastic interactions of the multiple-front waves for the modified Kadomtsev–Petviashvili equation in fluid dynamics, plasma physics and electrodynamics. Wave Motion 46, 511–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Konopelcheno, B.G., Dubrovsky, V.G.: Some integrable nonlinear evolution equations in dimensions. Phys. Lett. A 102, 15–17 (1984)

    Article  MathSciNet  Google Scholar 

  9. Bekir, A.: Applications of the extended tanh-method for coupled nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 13, 1748–1757 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, Z., Bullough, R.K.: Combined and Riemann–Hilbert inverse methods for integrable nonlinear evolution equations in \((2+1)\) dimensions. J. Phys. A Math. Gen. 20, L429–L435 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin, J., Lou, S.Y., Wang, K.L.: Multi-soliton solutions of the Konopelchenko–Dubrovsky equation. Chin. Phys. Lett. 18, 1173–1175 (2001)

    Article  Google Scholar 

  12. Wang, D.S., Zhang, H.Q.: Further improved F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equation. Chaos Solitons Fractals 25, 601–610 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, J.B., Liu, Z.R.: Smooth and non-smooth traveling waves in a nonlinearly dispersive equation. Appl. Math. Model. 25, 41–56 (2000)

    Article  MATH  Google Scholar 

  14. Rui, W.G.: The integral bifurcation method combined with factoring technique for investigating exact solutions and their dynamical properties of a generalized Gardner equation. Nonlinear Dyn. 76, 1529–1542 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, S.Y., Li, Y., Zhang, B.G.: Some singular solutions and their limit forms for generalized Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 85, 1665–1677 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, S.Y., Liu, Z.R.: Kink-like wave and compacton-like wave solutions for generalized KdV equation. Nonlinear Dyn. 79, 903–918 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Z.R., Liang, Y.: The explicit nonlinear wave solutions and their bifurcations of the generalized Camassa-Holm equation. Int. J. Bifurc. Chaos 21, 3119–3136 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wen, Z.S.: Bifurcation of solitons, peakons, and periodic cusp waves for \(\theta \)-equation. Nonlinear Dyn. 77, 247–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Song, M.: Nonlinear wave solutions and their relations for the modified Benjamin–Bona–Mahony equation. Nonlinear Dyn. 80, 431–446 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Song, M., Liu, Z.R., Biswas, A.: Soliton solution and bifurcation analysis of the KP-Benjamin–Bona–Mahoney equation with power law nonlinearity. Nonlinear Anal. Model. Control 20, 417–427 (2015)

    Article  MathSciNet  Google Scholar 

  21. Song, M., Liu, Z.R.: Periodic wave solutions and their limits for the ZK–BBM equation. Appl. Math. Comput. 232, 9–26 (2014)

    MathSciNet  Google Scholar 

  22. Chen, Y., Li, B.: General projective Riccati equation method and exact solutions for generalized KdV-type and KdV-Burgers-type equations with nonlinear terms of any order. Chaos Solitons Fractals 19, 977–984 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Y., Li, B., Zhang, H.Q.: Symbolic computation and construction of soliton-like solutions to the \((2+1)\)-dimensional breaking soliton equation. Commun. Theor. Phys. 40(2), 137–142 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, B., Chen, Y.: On exact solutions of the nonlinear Schr\({\ddot{o}}\)dinger equations in optical fiber. Chaos Solitons Fractals 21, 241–247 (2004)

    Article  MathSciNet  Google Scholar 

  25. Li, B., Chen, Y., Zhang, H.Q.: Explicit exact solutions for new general two-dimensional KdV-type and two-dimensional KdV-Burgers-type equations with nonlinear terms of any order. J. Phys. A Math. Gen. 35, 8253–8265 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, B., Chen, Y., Zhang, H.Q.: Auto-B\({\ddot{a}}\)klund transformation and exact solutions for compound KdV-type and compound KdV-burgers-type equations with nonlinear terms of any order. Phys. Lett. A 305, 377–382 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan, Z.Y.: Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres. Chaos Solitons Fractals 16, 759–766 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wadati, M.: Wave propagation in nonlinear lattice. I. J. Phys. Soc. Jpn. 38, 673–679 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, D.S., Zhang, H.Q.: Further improved F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equation. Chaos Solitons Fractals 25, 601–610 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Song, L.N., Zhang, H.Q.: New exact solutions for the Konopelchenko–Dubrovsky equation using an extended Riccati equation rational expansion method and symbolic computation. Appl. Math. Comput. 187, 1373–1388 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

All authors wish to thank the editor and the anonymous referee for many valuable suggestions leading to an improvement of this paper. This work was partially supported by National Natural Science Foundation of China (Grant Nos. 11571116, 11501373, and 11601340), Natural Science Foundation of Guangdong Province (No. S2016010020464 and No. S2016010030049 ), Education research platform project of Guangdong Province (No. 2014KQNCX208), Education Reform Project of Guangdong Province (No. 2015558), Shaoguan Science and Technology Foundation (No. 20157212 and No. 20157201), Education Reform Project of Shaoguan University (SYJY20151643 and SYJY20141576), Science Foundation of Shaoguan University (SZ2016KJ04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyong Li.

Appendix A: some solutions of Eq. (3.3).

Appendix A: some solutions of Eq. (3.3).

Case (1) Kink-shaped solitary-like wave solutions.

(I). If \(d_0=\frac{{d_2}^2}{4d_4}, d_1=d_3=0, d_2 < 0, d_4>0\), then Eq. (3.3) has a kink-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\epsilon \sqrt{-\displaystyle \frac{{d_2 }}{{2d_4 }}} \mathrm{tanh}\left( \sqrt{-\displaystyle \frac{d_2}{2} } \xi \right) . \end{aligned} \end{aligned}$$
(5.1)

If \(d_0=\displaystyle \frac{{d_2}^2}{4d_4}, d_1=d_3=0, d_2> 0, d_4 > 0\), then Eq. (3.3) has a kink-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\, \epsilon \sqrt{ \displaystyle \frac{{d_2 }}{{2d_4 }}} \mathrm{tan}\left( \sqrt{\displaystyle \frac{d_2}{2} } \xi \right) . \end{aligned} \end{aligned}$$
(5.2)

If \(d_0=d_1=0, d_3\ne 0, d_2 > 0, d_4 =c\), then Eq. (3.3) has a kink-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\, -\displaystyle \frac{d_2}{d_3}\left[ 1+\epsilon \mathrm{tanh}\left( \sqrt{\displaystyle \frac{d_2}{2} } \xi \right) \right] . \end{aligned} \end{aligned}$$
(5.3)

If \(d_0=d_1=0, d_3\ne 0, d_2 > 0, d_4 =c\), then Eq. (3.3) has a kink-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\, -\displaystyle \frac{d_2}{d_3}\left[ 1+\epsilon \mathrm{coth}\left( \sqrt{\displaystyle \frac{d_2}{2} } \xi \right) \right] . \end{aligned} \end{aligned}$$
(5.4)

(II). Bell-shaped solitary-like wave solutions.

If \(d_0=d_1=d_3=0, d_2 > 0, d_{4} < 0\), then Eq. (3.3) has a bell-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\sqrt{ - \displaystyle \frac{{d_2 }}{{d_4 }}} \mathrm{sech}\left( \sqrt{d_2 } \xi \right) , \end{aligned} \end{aligned}$$
(5.5)

If \(d_0=d_1=d_3=0, d_2 < 0, d_4 > 0\), then Eq. (3.3) has a bell-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\sqrt{ - \displaystyle \frac{{d_2 }}{{d_4 }}} \mathrm{sec}\left( \sqrt{-d_2 } \xi \right) , \end{aligned} \end{aligned}$$
(5.6)

If \(d_0>0,d_1=d_3=d_4=0, d_2 > 0\), then Eq. (3.3) has a bell-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\epsilon \sqrt{ \displaystyle \frac{{d_0 }}{{d_2 }}} \mathrm{sinh}\left( \sqrt{d_2 } \xi \right) , \end{aligned} \end{aligned}$$
(5.7)

If \(d_1\ne 0,d_0=d_3=d_4=0, d_2 > 0\), then Eq. (3.3) has a bell-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\, -\displaystyle \frac{d_1}{2d_2}+\displaystyle \frac{\epsilon d_1}{2d_2}\mathrm{sinh}\left( 2\sqrt{d_2 } \xi \right) , \end{aligned} \end{aligned}$$
(5.8)

If \(d_0=d_1=d_4=0, d_2>0\), then Eq. (3.3) has a bell-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\, - \displaystyle \frac{{d_2 }}{{d_3 }}{\mathrm{sech}}^2 \left( \displaystyle \frac{{\sqrt{d_2 } }}{2}\xi \right) . \end{aligned} \end{aligned}$$
(5.9)

If \(d_0=d_1=d_4=0,d_2<0\), then Eq. (3.3) has a bell-shaped solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,- \displaystyle \frac{{d_2 }}{{d_3 }}{\mathrm{sec}}^2 \left( \displaystyle \frac{{\sqrt{-d_2 } }}{2}\xi \right) . \end{aligned} \end{aligned}$$
(5.10)

(III). Solitary-like wave solutions (1).

If \(d_1=d_3=d_4=0, d_0>0, d_2<0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\epsilon \sqrt{\displaystyle \frac{-d_0}{d_2}} {\mathrm{sin}}\left( \sqrt{-h_2}\xi \right) . \end{aligned} \end{aligned}$$
(5.11)

If \(d_0=d_3=d_4=0, d_1\ne 0, d_2<0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,-\displaystyle \frac{d_1}{2d_2}+\displaystyle \frac{\epsilon d_1}{2d_2}\sin \left( \sqrt{-d_2}\xi \right) . \end{aligned} \end{aligned}$$
(5.12)

If \(d_0=d_1=d_2=0, d_3\ne 0, d_4<0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\displaystyle \frac{d_3}{2d_4}\exp {\displaystyle \frac{\epsilon d_3}{2\sqrt{-d_4}}}. \end{aligned} \end{aligned}$$
(5.13)

If \(d_0=\displaystyle \frac{d^{2}_1}{4d_2}, d_1=c, d_2>0, d_3=d_4=0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,-\displaystyle \frac{d_1}{2d_2}+\exp \left( \epsilon \sqrt{d_2}\xi \right) . \end{aligned} \end{aligned}$$
(5.14)

If \(d_0=c, d_1\ne 0, d_2=0, d_3=d_4=0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,-\displaystyle \frac{d_0}{d_1}+\displaystyle \frac{1}{4}d_1\xi ^{2}. \end{aligned} \end{aligned}$$
(5.15)

If \(d_0>0, d_1=d_2=0, d_3=d_4=0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =\epsilon \sqrt{d_0}\xi . \end{aligned} \end{aligned}$$
(5.16)

(IV). Solitary-like wave solutions(2).

If \(d_0=d_1=0, d_2> 0, d_3=c, d_{4}>0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\, -\displaystyle \frac{{d_2 {\mathrm{sech}} ^2 \left( \displaystyle \frac{1}{2}\sqrt{ d_2 } \xi \right) }}{{2\epsilon \sqrt{ d_2 d_4 } \mathrm{tanh} \left( \displaystyle \frac{1}{2}\sqrt{ d_2 } \xi \right) +d_3 }}. \end{aligned} \end{aligned}$$
(5.17)

If \(d_0=d_1=0, d_2> 0, d_3=c, d_{4}>0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\, \displaystyle \frac{{d_2 {\mathrm{csch}} ^2 \left( \displaystyle \frac{1}{2}\sqrt{ d_2 } \xi \right) }}{{2\epsilon \sqrt{ d_2 d_4 } \mathrm{coth}\left( \displaystyle \frac{1}{2}\sqrt{ d_2 } \xi \right) +d_3 }}. \end{aligned} \end{aligned}$$
(5.18)

If \(d_0=d_1=0, d_2 < 0, d_3=c, d_{4}>0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,-\displaystyle \frac{{d_2 {\mathrm{sec}}^2 \left( \displaystyle \frac{1}{2}\sqrt{- d_2 } \xi \right) }}{{2\epsilon \sqrt{ - d_2 d_4 } \mathrm{tan}(\displaystyle \frac{1}{2}\sqrt{ - d_2 } \xi ) +d_3 }}. \end{aligned} \end{aligned}$$
(5.19)

If \(d_0=d_1=0, d_2 < 0, d_3=c, d_{4}>0\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\, -\displaystyle \frac{{d_2 {\mathrm{csc}}^2 \left( \displaystyle \frac{1}{2}\sqrt{- d_2 } \xi \right) }}{{2\epsilon \sqrt{ - d_2 d_4 } \cot \left( \displaystyle \frac{1}{2}\sqrt{ - d_2 } \xi \right) +d_3 }}. \end{aligned} \end{aligned}$$
(5.20)

If \(d_0=d_1=0, d_2 > 0, d_{3}=d_{4}=c\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\displaystyle \frac{{2d_2 \mathrm{sech}\left( \sqrt{d_2 } \xi \right) }}{{\epsilon \sqrt{ d^{2}_{3}-4d_2 d_4 }-d_3\mathrm{sech} \left( \sqrt{d_2 } \xi \right) }}. \end{aligned} \end{aligned}$$
(5.21)

If \(d_0=d_1=0, d_2 < 0, d_{3}=d_{4}=c\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\displaystyle \frac{{2d_2 \mathrm{csc}\left( \sqrt{-d_2 } \xi \right) }}{{\epsilon \sqrt{ d^{2}_{3}-4d_2 d_4 }-d_3\mathrm{csc} \left( \sqrt{-d_2 } \xi \right) }}. \end{aligned} \end{aligned}$$
(5.22)

If \(d_0=d_1=0, d_2 < 0, d_{3}=d_{4}=c\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\displaystyle \frac{{2d_2 \mathrm{sec}\left( \sqrt{-d_2 } \xi \right) }}{{\epsilon \sqrt{ d^{2}_{3}-4d_2 d_4 }-d_3\mathrm{sec}(\sqrt{-d_2 } \xi )}}. \end{aligned} \end{aligned}$$
(5.23)

If \(d_0=d_1=0, d_2 > 0, d_{3}=d_{4}=c\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\displaystyle \frac{{2d_2 \mathrm{csch}\left( \sqrt{d_2 } \xi \right) }}{{\epsilon \sqrt{ -d^{2}_{3}+4d_2 d_4 }-d_3\mathrm{csch}\left( \sqrt{d_2 } \xi \right) }}. \end{aligned} \end{aligned}$$
(5.24)

If \(d_0=d_1=0, d_2 > 0, d_{3}\ne 0, d_{4}=c\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\displaystyle \frac{{-d_2d_3 \mathrm{sech}^{2}\left( \displaystyle \frac{1}{2}\sqrt{d_2 } \xi \right) }}{d^{2}_{3}-d_2 d_4\left( 1+\epsilon \tanh \left( \displaystyle \frac{1}{2}\sqrt{d_2 }\xi \right) \right) ^2}. \end{aligned} \end{aligned}$$
(5.25)

If \(d_0=d_1=0, d_2 > 0, d_{3}\ne 0, d_{4}=c\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\displaystyle \frac{{d_2d_3 \mathrm{csch}^{2}\left( \displaystyle \frac{1}{2}\sqrt{d_2 } \xi \right) }}{d^{2}_{3}-d_2 d_4\left( 1+\epsilon \coth \left( \displaystyle \frac{1}{2}\sqrt{d_2 }\xi \right) \right) ^2}. \end{aligned} \end{aligned}$$
(5.26)

If \(d_0=d_1=0, d_2 > 0, d_{3}=d_{4}=c\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\displaystyle \frac{{4d_2\mathrm{exp}\left( \epsilon \sqrt{d_2}\xi \right) }}{\left( \hbox {exp}\left( \epsilon \sqrt{d_2}\xi \right) ^{2}-d_{3}\right) ^{2}-4d_2 d_4}. \end{aligned} \end{aligned}$$
(5.27)

If \(d_0=d_1=0, d_2 > 0, d_{3}=d_{4}=c\), then Eq. (3.3) has a solitary-like wave solution

$$\begin{aligned} \begin{aligned} \phi =&\,\displaystyle \frac{{\pm 4d_2\mathrm{exp}\left( \epsilon \sqrt{d_2}\xi \right) }}{1-4d_2 d_4exp\left( 2\epsilon \sqrt{d_2}\xi \right) }. \end{aligned} \end{aligned}$$
(5.28)

Case (2) Jacobi-like and Weierstrass-like doubly periodic solutions.

If \(d_{1}=d_{3}=0, d_4 < 0, d_2 > 0, d_0= \displaystyle \frac{{d_2 ^2 m^2 (1 - m)^2}}{{d_4 (2m^2-1)^2 }}\), then Eq. (3.3) has a Jacobi-like and Weierstrass-like doubly periodic solution

$$\begin{aligned} \begin{aligned} \phi =&\,\epsilon \sqrt{\displaystyle \frac{{ - d_2 m^2 }}{{d_4 (2m^2 - 1)}}} \mathrm{cn}\left( \sqrt{\displaystyle \frac{{d_2 }}{{2m^2 - 1}}} \xi \right) , \end{aligned} \end{aligned}$$
(5.29)

If \(d_{1}=d_{3}=0, d_4 < 0, d_2> 0, d_0= \displaystyle \frac{{d_2 ^2 (1 - m^2 )}}{{d_4 (2 - m^2)^2 }}\), then Eq. (3.3) has a Jacobi-like and Weierstrass-like doubly periodic solution

$$\begin{aligned} \begin{aligned} \phi =&\,\epsilon \sqrt{\displaystyle \frac{{ - d^2 }}{{d_4 (2 - m^2)}}} {\mathrm{dn}}\left( \sqrt{\displaystyle \frac{{d_2 }}{{2 - m^2}}} \xi \right) , \end{aligned} \end{aligned}$$
(5.30)

If \(d_{1}=d_{3}=0, d_4> 0, d_2 < 0, d_0= \displaystyle \frac{{d_2 ^2 m^2 }}{{d_4 (m^2 + 1)^2}}\), then Eq. (3.3) has a Jacobi-like and Weierstrass-like doubly periodic solution

$$\begin{aligned} \begin{aligned} \phi =&\,\epsilon \sqrt{\displaystyle \frac{{ - d_2 m^2 }}{{d_4 (m^2 + 1)}}} \mathrm{sn}\left( \sqrt{-\displaystyle \frac{{d_2 }}{{m^2 + 1}}} \xi \right) , \end{aligned} \end{aligned}$$
(5.31)

where m is a modulus.

$$\begin{aligned} \begin{aligned} \phi = \wp \left( \displaystyle \frac{\sqrt{d_3}}{2}\xi , g_2, g_3\right) ,&d_2=0, d_3 > 0, \end{aligned} \end{aligned}$$
(5.32)

where \(g_2=-4\displaystyle \frac{d_1}{d_3}\) and \(g_3=-4\displaystyle \frac{d_0}{d_3}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, S. & Wei, R. Bifurcation analysis and solitary-like wave solutions for extended \({{\varvec{(2+1)}}}\)-dimensional Konopelchenko–Dubrovsky equations. Nonlinear Dyn 88, 609–622 (2017). https://doi.org/10.1007/s11071-016-3264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3264-5

Keywords

Mathematics Subject Classification

Navigation