Skip to main content
Log in

The couple stress-based nonlinear coupled three-dimensional vibration analysis of microspinning Rayleigh beams

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear coupled three-dimensional vibrations of microspinning Rayleigh beams are analytically studied utilizing the modified couple stress theory to take into account the small-scale effects. The considered nonlinearity is of geometrical type due to the mid-plane stretching. The rotary inertia and gyroscopic effects are both included in the formulation. Governing equations of motion are derived with the aid of the Hamilton Principle and then transformed into complex form. Then, the Galerkin and multiple scales methods are utilized to solve the nonlinear partial differential equation. Approximate analytical expressions for nonlinear natural frequencies of the spinning beams in forward and backward whirling motions are obtained. Numerical results illustrate that the length-scale value has a significant effect on linear and nonlinear natural frequencies as well as the critical rotational speeds of hinged–hinged and clamped–clamped microrotating beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khanna, R.: MEMS fabrication perspectives from the MIT Microengine Project. Surf. Coat. Technol. 163–164, 273–280 (2003)

    Article  Google Scholar 

  2. Senturia, S.D.: Mircosystem Design. Kluwer Academic Publishers, London (2002)

    Google Scholar 

  3. Epstein, A.H., Anathasuresh, G., Ayon, A., et al.: Power MEMS and microengines. In: Proceeding of IEEE Transducers ‘97 Conference, Chicago, IL, USA (1997)

  4. Fréchette, L.G., Lee, C., Arslan, S., et al.: Preliminary design of a MEMS steam turbine power plant-on-a-chip. In: 3rd Int’l Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS’03), Makuhari, Japan (2003)

  5. Lang, J.H.: Multi-Wafer Rotating MEMS Machines: Turbines, Generators, and Engines. Springer, US (2009)

  6. Schubert, D.: Mems-Concept Using Micro Turbines for Satellite Power Supply, Solar Power. InTech, Winchester (2012)

    Google Scholar 

  7. Fleck, N.A., Muller, G.M., Ashby, M.F.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  8. Stolken, J.S., Evans, A.G.: Microbend test method for measuring the plasticity length scale. J. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  9. Lam, D.C.C., Yang, F., Chong, A.C.M.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  10. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  11. Kurnik, W.: Stability and bifurcation analysis of a nonlinear transversally loaded rotating shaft. Nonlinear Dyn. 5, 39–52 (1994)

    Google Scholar 

  12. Hosseini, S.A.A., Khadem, S.E.: Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia. Mech. Mach. Theory 44, 272–288 (2009)

    Article  MATH  Google Scholar 

  13. El-Saeidy, F.M.A.: Finite-element dynamic analysis of a rotating shaft with or without nonlinear boundary conditions subject to a moving load. Nonlinear Dyn. 21, 377–408 (2000)

    Article  MATH  Google Scholar 

  14. Luczko, J.: A geometrically non-linear model of rotating shafts with internal resonance and self-excited vibration. J. Sound Vib. 255, 433–456 (2002)

    Article  Google Scholar 

  15. Dimentberg, M.F.: Random vibrations of a rotating shaft with non-linear damping. Int. J. Nonlinear Mech. 40, 711–713 (2005)

    Article  MATH  Google Scholar 

  16. Dimentberg, M.F.: Transverse vibrations of rotating shafts: probability density and first-passage time of whirl radius. Int. J. Nonlinear Mech. 40, 1263–1267 (2005)

    Article  MATH  Google Scholar 

  17. Samantaray, A.K.: Steady-state dynamics of a non-ideal rotor with internal damping and gyroscopic effects. Nonlinear Dyn. 56, 443–451 (2009)

    Article  MATH  Google Scholar 

  18. Dasgupta, S.S., Samantaray, A.K., Bhattacharyya, R.: Stability of an internally damped non-ideal flexible spinning shaft. Int. J. Nonlinear Mech. 45, 286–293 (2010)

    Article  Google Scholar 

  19. Yabuno, H., Kashimura, T., Inoue, T., Ishida, Y.: Nonlinear normal modes and primary resonance of horizontally supported Jeffcott rotor. Nonlinear Dyn. 66, 377–387 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khadem, S.E., Shahgholi, M., Hosseini, S.A.A.: Two-mode combination resonances of an in-extensional rotating shaft with large amplitude. Nonlinear Dyn. 65, 217–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68, 487–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shahgholi, M., Hosseini, S.A.A.: Stability analysis of a nonlinear rotating asymmetrical shaft near the resonances. Nonlinear Dyn. 70, 1311–1325 (2012)

    Article  MathSciNet  Google Scholar 

  23. Anthoine, A.: Effect of couple-stresses on the elastic bending of beams. Int. J. Solids Struct. 37, 1003–1018 (2000)

    Article  MATH  Google Scholar 

  24. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  25. Park, S.K., Gao, X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  26. Kong, S., Zhou, S., Nie, Z., Wang, K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  MATH  Google Scholar 

  27. Ke, L.-L., Wang, Y.-S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  28. Reddy, J.N.: Micro structure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  MATH  Google Scholar 

  29. Xia, W., Wang, L., Yin, L.: Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  32. Asghari, M., Taati, E.: A size-dependent model for functionally graded micro-plates for mechanical analyses. J. Vib. Control 19, 1614–1632 (2013)

    Article  MathSciNet  Google Scholar 

  33. Farokhi, H., Ghayesh, M.H., Kosasih, B., Akaber, P.: On the nonlinear resonant dynamics of Timoshenko microbeams: effects of axial load and geometric imperfection. Meccanica 51, 155–169 (2016)

    Article  MathSciNet  Google Scholar 

  34. Dai, H.L., Wang, Y.K., Wang, L.: Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int. J. Eng. Sci. 94, 103–112 (2015)

    Article  MathSciNet  Google Scholar 

  35. Ghayesh, M.H., Farokhi, H., Alici, G.: Subcritical parametric dynamics of microbeams. Int. J. Eng. Sci. 95, 36–48 (2015)

    Article  MathSciNet  Google Scholar 

  36. Lee, H.L., Chang, W.J.: Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory. Micron 80, 1–5 (2016)

  37. Li, Y.S., Pan, E.: Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. Int. J. Eng. Sci. 97, 40–59 (2015)

    Article  MathSciNet  Google Scholar 

  38. Simsek, M., Aydin, M., Yurtcu, H.H., Reddy, J.N.: Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech. 226, 3807–3822 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asghari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghari, M., Hashemi, M. The couple stress-based nonlinear coupled three-dimensional vibration analysis of microspinning Rayleigh beams. Nonlinear Dyn 87, 1315–1334 (2017). https://doi.org/10.1007/s11071-016-3116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3116-3

Keywords

Navigation