Skip to main content
Log in

Dynamics and control in an \(({\varvec{n}}+{\varvec{2}})\)-neuron BAM network with multiple delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The issues of the stability and bifurcation for a delayed BAM network involving two neurons in the I-layer and arbitrary neurons in the J-layer are concerned in the present paper. By adopting the sum of the delays as the bifurcation parameter, we discuss the distribution of the roots of the characteristic equation for high-dimension system in terms of stability switches theory and further present some sufficient conditions for the occurrence of Hopf bifurcations. Analysis reveals that Hopf bifurcation will emerge after the given system loses its stability. Moreover, we derive explicit general formulae to determine the properties of bifurcation via the normal theory and the center manifold theorem. It is demonstrated that the sum of the delays can effectively affect the dynamics of the proposed system. Finally, an illustrative example is employed to verify the validity of the theoretical results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Liang, X.B., Wang, J.: A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints. IEEE Trans. Neural Netw. 11(6), 1251–1262 (2000)

    Article  Google Scholar 

  2. Arik, S.: Global asymptotic stability of a larger class of neural networks with constant time delay. Phys. Lett. A 311(6), 504–511 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zheng, B.D., Zhang, Y.Z., Zhang, C.R.: Global existence of periodic solutions on a simplified BAM neural network model with delays. Chaos Solitons Fractals 37(5), 1397–1408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Karimi, H.R., Gao, H.J.: New delay-dependent exponential synchronization for uncertain neural networks with mixed time delays. IEEE Trans. Syst. Man Cybern. B Cybern. 40(1), 173–185 (2010)

    Article  Google Scholar 

  5. Li, S., Yangming, M.: Nonlinearly activated neural network for solving time-varying complex sylvester equation. IEEE Trans. Cybern. 44(8), 1397–1407 (2014)

    Article  Google Scholar 

  6. Qi, J.T., Li, C.D., Huang, T.W.: Stability of delayed memristive neural networks with time-varying impulses. Cogn. Neurodyn. 8(5), 429–436 (2014)

    Article  Google Scholar 

  7. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. In: Proceedings of the National Academy of Sciences of the United States of America. vol. 81(10), pp. 3088–3092 (1984)

  8. Mizuki, O., Tsunehiro, I., Masato, K., Akira, T., Akira, N.: Influences of nonuniformity in metal concentration in gate dielectric silicate on CMIS inverters’ propagation delay time. Solid State Electron. 48(12), 347–359 (2004)

    Google Scholar 

  9. Chis, O., Neamtu, M., Opris, D.: Deterministic and stochastic model for the role of the immune response time delay in periodic therapy of the tumors. Curr. Comput. Aided Drug Des. 7(4), 338–350 (2011)

    Article  Google Scholar 

  10. Chang, C.Y., Liao, K.Y., Hsu, S.C., Li, J.C., Rau, J.C.: Compact test pattern selection for small delay defect. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(6), 971–975 (2013)

    Article  Google Scholar 

  11. Wang, Y., Cao, J.D., Sun, G.Q., Li, J.: Effect of time delay on pattern dynamics in a spatial epidemic model. Phys. A 412, 137–148 (2014)

    Article  MathSciNet  Google Scholar 

  12. Kosko, B.: Adaptive bidirectional associative memories. Appl. Opt. 26(23), 4947–4960 (1987)

    Article  Google Scholar 

  13. Kosko, B.: Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 18(1), 49–60 (1988)

    Article  MathSciNet  Google Scholar 

  14. Gopalsamy, K., He, X.Z.: Delay-independent stability in bidirectional associative memory networks. IEEE Trans. Neural Netw. 5(6), 998–1002 (1994)

    Article  Google Scholar 

  15. Wei, J.J., Ruan, S.G.: Stability and bifurcation in a neural network model with two delays. Phys. D Nonlinear Phenom. 130(3), 255–272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, H., Liao, X.F., Li, C.D.: Existence and exponential stability of periodic solution of BAM neural networks with impulse and time-varying delay. Chaos Solitons Fractals 33(3), 1028–1039 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Balasubramaniam, P., Vembarasan, V.: Robust stability of uncertain fuzzy BAM neural networks of neutral-type with Markovian jumping parameters. Comput. Math. Appl. 62(4), 1838–1861 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cao, J.D., Wan, Y.: Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw. 53, 165–172 (2014)

    Article  MATH  Google Scholar 

  19. Sathy, R., Balasubramaniam, P.: Stability analysis of fuzzy Markovian jumping Cohen–Grossberg BAM neural networks with mixed time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 16(4), 2054–2064 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C.D., Hu, W.F., Wu, S.C.: Stochastic stability of impulsive BAM neural networks with time delays. Comput. Math. Appl. 61(8), 2313–2316 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, Q.X., Cao, J.D.: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 467–479 (2012)

    Article  Google Scholar 

  22. Raja, R., Karthik Raja, U., Samidurai, R., Leelamani, A.: Passivity analysis for uncertain discrete-time stochastic BAM neural networks with time-varying delays. Neural Comput. Appl. 25(3–4), 751–766 (2014)

    Article  MATH  Google Scholar 

  23. Raja, R., Karthik Raja, U., Samidurai, R., Leelamani, A.: Dynamic analysis of discrete-time BAM neural networks with stochastic perturbations and impulses. Int. J. Mach. Learn. Cybern. 5(1), 39–50 (2014)

    Article  MATH  Google Scholar 

  24. Shayer, L.P., Campbell, S.A.: Stability, bifurcation, and multistability in a system of two couple neurons with multiple time delays. SIAM J. Appl. Math. 61(2), 673–700 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, C.D., Cao, J.D.: Hopf bifurcation in an \(n\)-dimensional Goodwin model via multiple delays feedback. Nonlinear Dyn. 79(4), 2541–2552 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gupta, P.D., Majee, N.C., Roy, A.B.: Stability and Hopf-bifurcation analysis of delayed BAM neural network under dynamic thresholds. Nonlinear Anal. Model. Control 14(4), 435–461 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Xiao, M., Jiang, G., Zhao, L.D.: State feedback control at Hopf bifurcation in an exponential RED algorithm model. Nonlinear Dyn. 76(2), 1469–1484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, W.Y., Cao, J.D., Xiao, M.: Bifurcation analysis and control in exponential RED algorithm. Neurocomputing 129, 232–245 (2014)

    Article  Google Scholar 

  29. Liu, M., Xu, X.F., Zhang, C.R.: Stability and global Hopf bifurcation for neutral BAM neural network. Neurocomputing 145, 122–130 (2014)

    Article  Google Scholar 

  30. Song, Y.L., Han, M.A., Wei, J.J.: Stability and Hopf bifurcation on a simplified BAM network model with delays. Phys. D Nonlinear Phenom. 200(3–4), 185–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cao, J.D., Xiao, M.: Stability and Hopf bifurcation in a simplified BAM nural network with two time delays. IEEE Trans. Neural Netw. 18(2), 416–430 (2007)

    Article  MathSciNet  Google Scholar 

  32. Yang, Y., Ye, J.: Stability and bifurcation in a simplified five-neuron BAM neural network with delays. Chaos Solitons Fractals 42(4), 2357–2363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, C.J., Li, P.L.: Bifurcation analysis in a simplified six-neuron BAM neural network with two delays. J. Inf. Comput. Sci. 49(13), 3849–3858 (2012)

    Google Scholar 

  34. Xiao, M., Zheng, W.X., Cao, J.D.: Hopf bifurcation of an (\(n + 1\))-neuron bidirectional associative memory neural network model with delays. IEEE Trans. Neural Netw. Learn. Syst. 24(1), 118–132 (2013)

    Article  Google Scholar 

  35. Yu, W.W., Cao, J.D.: Stability and bifurcation on a four-neuron BAM neural network with delays. Phys. Lett. A 351(1), 64–78 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Javidmanesh, E., Afsharnezhad, Z.: Hopf bifurcation analysis of a delayed five-neuron BAM neural network with two neurons in the \(X\)-layer. Iran. J. Numer. Anal. Optim. 3(2), 1–12 (2013)

    MATH  Google Scholar 

  37. Javidmanesh, E., Afsharnezhad, Z.: Existence and stability analysis of bifurcating periodic solutions in a delayed five-neuron BAM neural network model. Nonlinear Dyn. 72(1), 149–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Z.H., Hu, H.Y.: Stability switches of time-delayed dynamic systems with unknown parameters. J. Sound Vib. 233(2), 215–233 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, J.Q., Ma, Z.E.: Stability switches in a class of characteristic equations with delay-dependent parameters. Nonlinear Anal. Real World Appl. 5(3), 389–408 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ruan, S.G., Wei, J.J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10(6), 863–874 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  42. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers and the handling editor for their helpful comments and constructive suggestions, which have been very useful in improving the quality of the manuscript. This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under Grant No. (17-130-36-HiCi). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinde Cao.

Appendices

Appendix 1

Derivation of the expressions of \(\varTheta _{ij}\), \(\varPsi _{ij}\) \((i=1,2;j=1,2,3)\) in Eqs. (10) and (11)

$$\begin{aligned} \varTheta _{11}=&\,(-1)^{k+1}\omega ^{n+2}+(-1)^{k}\omega ^{n}a_{2}\\&+\sum \limits _{i=1}^{(n-2)/2}(-1)^{k-i}\omega ^{n-2i}(c_{2i-1} +a_{2i+2}),\\ \varTheta _{12}=&\,-(-1)^{k}\omega ^{n+1}a_{1}-(-1)^{k-1}\omega ^{n-1}a_{3}\\&+\sum \limits _{i=1}^{(n-2)/2}(-1)^{k-(i+1)}\omega ^{n-(2i+1)}(c_{2i} -a_{2i+3}), \end{aligned}$$
$$\begin{aligned} \varTheta _{13}=&\,-\sum \limits _{i=1}^{(n+2)/2}(-1)^{k-(i-1)}\omega ^{n-2(i-1)}b_{2i-1},\\ \varTheta _{21}=&\,(-1)^{k}\omega ^{n+1}a_{1}+(-1)^{k-1}\omega ^{n-1}a_{3}\\&+\sum \limits _{i=1}^{(n-2)/2}(-1)^{k-(i+1)}\omega ^{n-(2i+1)}(a_{2i+3} -c_{2i}),\\ \varTheta _{22}=&\,(-1)^{k+1}\omega ^{n+2}+(-1)^{k}\omega ^{n}a_{2}\\&+\sum \limits _{i=1}^{(n-2)/2}(-1)^{k-i}\omega ^{n-2i}(a_{2i+2} -c_{2i+1}),\\ \varTheta _{23}=&\,-\sum \limits _{i=1}^{n/2}(-1)^{k-i}\omega ^{n-(2i-1)}b_{2i}.\\ \varPsi _{11}=&\,(-1)^{k+1}\omega ^{n+1}a_{1}+(-1)^{k}\omega ^{n-1}a_{3}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega ^{n-(2i+1)}(c_{2i} +a_{2i+3}),\\ \varPsi _{12}=&\,-(-1)^{k+1}\omega ^{n+2}-(-1)^{k}\omega ^{n}a_{2}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega ^{n-2i}(c_{2i-1} +a_{2i+2}),\\ \varPsi _{13}=&\,-\sum \limits _{i=1}^{(n+1)/2}(-1)^{k-(i+1)}\omega ^{n-(2i-1)}b_{2i},\\ \varPsi _{21}=&\,(-1)^{k+1}\omega ^{n+2}+(-1)^{k-1}\omega ^{n}a_{2}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega ^{n-2i}(a_{2i+2} -c_{2i+1}),\\ \varPsi _{22}=&\,(-1)^{k+1}\omega ^{n+1}a_{1}+(-1)^{k}\omega ^{n-1}a_{3}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega ^{n-(2i+1)}(a_{2i+3} -c_{2i}),\\ \varPsi _{23}=&\,-\sum \limits _{i=1}^{(n+1)/2}(-1)^{k-(i-1)}\omega ^{n-(2i-1)}b_{2i-1}. \end{aligned}$$

Appendix 2

Derivation of the expressions of \(M_{ij}(i=1,2;j=1,2)\) in Eq. (17)

$$\begin{aligned} M_{11}=&\,\bigg [(-1)^{k+1}\omega _{0}^{n+3}+(-1)^{k}\omega _{0}^{n+1}a_{2}\\&+\sum \limits _{i=1}^{(n-2)/2}(-1)^{k-i}\omega _{0}^{n-2i+1}(a_{2i+2} -c_{2i+1})\bigg ]\sin (\omega _{0}\tau _{0})\\&+\bigg [(-1)^{k}\omega _{0}^{n+2}a_{1}+(-1)^{k-1}\omega _{0}^{n}a_{3}\\&+\sum \limits _{i=1}^{(n-2)/2}(-1)^{k-(i+1)}\omega _{0}^{n-2i}(a_{2i+3} -c_{2i})\bigg ]\cos (\omega _{0}\tau _{0}),\\ \end{aligned}$$
$$\begin{aligned} M_{12}=&\,\bigg [(-1)^{k+1}\omega _{0}^{n+3}+(-1)^{k}\omega _{0}^{n+1}a_{2}\\&+\sum \limits _{i=1}^{(n-2)/2}(-1)^{k-i}\omega _{0}^{n-2i+1}(a_{2i+2} -c_{2i+2})\bigg ]\cos (\omega _{0}\tau _{0})\\&+\bigg [(-1)^{k}\omega _{0}^{n+2}a_{1}+(-1)^{k-1}\omega _{0}^{n}a_{3}\\&+\sum \limits _{i=1}^{(n-2)/2}(-1)^{k-(i+1)}\omega _{0}^{n-2i}(a_{2i+3} +c_{2i})\bigg ]\sin (\omega _{0}\tau _{0}),\\ M_{21}=&\,\tau _{0}\Bigg \{\bigg [(n+1)(-1)^{k}\omega _{0}^{n}a_{1}+(n-1)(-1) ^{k-1}\omega _{0}^{n-2}a_{3}\\&+\sum \limits _{i=1}^{(n-2)/2}[n-(2i+1)](-1)^{k-(i+1)}\omega _{0} ^{n-2(i+1)}\\&\times (a_{2i+3}+c_{2i})\bigg ]\cos (\omega _{0}\tau _{0})\\&-\bigg [(n+2)(-1)^{k}\omega _{0}^{n+1}+n(-1)^{k-1}\omega _{0}^{n-1}a_{2}\\&-\sum \limits _{i=1}^{(n-2)/2}(n-2i)(-1)^{k-(i+1)}\omega _{0}^{n-(2i+1)}(a_{2(i+1)} -c_{i})\bigg ]\\&\times \sin (\omega _{0}\tau _{0})\Bigg \}\\&+\bigg [(n+1)(-1)^{k}\omega _{0}^{n}a_{1}+(n-1)(-1)^{k-1}\omega _{0}^{n-2}a_{3}\\&+\sum \limits _{i=1}^{(n-2)/2}[n-(2i+1)](-1)^{k-(i+1)}\omega _{0}^{n-2(i+1)}\\&\times (a_{2i+3}-c_{2i})\bigg ]\cos (\omega _{0}\tau _{0})\\&+\bigg [(n+2)(-1)^{k}\omega _{0}^{n+1}+n(-1)^{k-1}\omega _{0}^{n-1}a_{2}\\&\quad +\sum \limits _{i=1}^{(n-2)/2}(n-2i)(-1)^{k-(i+1)}\\&\times \omega _{0}^{n-2(i+1)}\cdot (a_{2(i+1)}-c_{i})\bigg ]\sin (\omega _{0}\tau _{0})\\&\quad +\sum \limits _{i=1}^{n/2}(n-(2i+1))(-1)^{k-i}\omega _{0}^{n-2i}b_{2i}, \end{aligned}$$
$$\begin{aligned} M_{22}=&\,\tau _{0}\Bigg \{\bigg [(n+1)(-1)^{k}\omega _{0}^{n}a_{1}+(n-1)(-1) ^{k-1}\omega _{0}^{n-2}a_{3}\\&\quad +\sum \limits _{i=1}^{(n-2)/2}[n-(2i+1)](-1)^{k-(i+1)}\omega _{0} ^{n-2(i+1)}\\&\quad \times (a_{2i+3}-c_{2i})\bigg ]\sin (\omega _{0}\tau _{0})\\&\quad -\bigg [(n+2)(-1)^{k}\omega _{0}^{n+1}+n(-1)^{k-1}\omega _{0}^{n-1}a_{2}\\&\quad +\sum \limits _{i=1}^{(n-2)/2}(n-2i)(-1)^{k-(i+1)}\omega _{0}^{n-(2i+1)}(a_{2(i+1)}\\&\quad +c_{i})\bigg ]\sin (\omega _{0}\tau _{0})\Bigg \}\\&\quad +\bigg [(n+1)(-1)^{k}\omega _{0}^{n}a_{1}+(n-1)(-1)^{k-1}\omega _{0}^{n-2}a_{3}\\&\quad +\sum \limits _{i=1}^{(n-2)/2}[n-(2i+1)](-1)^{k-(i+1)}\omega _{0}^{n-2(i+1)}\\&\quad \times (a_{2i+3}-c_{2i})\bigg ]\sin (\omega _{0}\tau _{0})\\&\quad +\bigg [(n+2)(-1)^{k}\omega _{0}^{n+1}+n(-1)^{k-1}\omega _{0}^{n-1}a_{2}\\&\quad +\sum \limits _{i=1}^{(n-2)/2}(n-2i)(-1)^{k-(i+1)}\\&\quad \times \omega _{0}^{n-2(i+1)}\cdot (a_{2(i+1)}-c_{i})\bigg ]\cos (\omega _{0}\tau _{0})\\&\quad +\sum \limits _{i=1}^{n/2}[n-(2i+1)](-1)^{k-i}\omega _{0}^{n-2i}b_{2i+1}.\\ \end{aligned}$$

Appendix 3

Derivation of the expressions of \(N_{ij}(i=1,2;j=1,2)\) in Eq. (17)

$$\begin{aligned} N_{11}=&\,\bigg [(-1)^{k+1}\omega _{0}^{n+2}a_{1}+(-1)^{k}\omega _{0}^{n}a_{3}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega _{0}^{n-(2i-1)}(a_{2i+3} -c_{2i})\bigg ]\sin (\omega _{0}\tau _{0})\\&+\bigg [(-1)^{k+1}\omega _{0}^{n+3}+(-1)^{k-1}\omega _{0}^{n+1}a_{2}\\&\times \sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega _{0}^{n-2i+1}(a_{2i+2} -c_{2i+1})\bigg ]\cos (\omega _{0}\tau _{0}), \end{aligned}$$
$$\begin{aligned} N_{12}=&\,\bigg [(-1)^{k+1}\omega _{0}^{n+2}a_{1}+(-1)^{k}\omega _{0}^{n}a_{3}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega _{0}^{n-2i}(a_{2i+3} -c_{2i})\bigg ]\cos (\omega _{0}\tau _{0})\\&+\bigg [(-1)^{k+1}\omega _{0}^{n+3}+(-1)^{k}\omega _{0}^{n+1}a_{2}\\&-\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega _{0}^{n-2i+1}(a_{2i+2} -c_{2i-1})\bigg ]\\&\times \sin (\omega _{0}\tau _{0}),\\ N_{21}=&\,\tau _{0}\Bigg \{\bigg [(-1)^{k+1}\omega _{0}^{n+1}a_{1}+(-1)^{k}\omega _{0}^{n-1}a_{3}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega _{0}^{n-(2i+1)}(a_{2i+3} -c_{2i})\bigg ]\cos (\omega _{0}\tau _{0})\\&-\bigg [(-1)^{k+1}\omega _{0}^{n+2}+(-1)^{k}\omega _{0}^{n}a_{2}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega _{0}^{n-2i}(a_{2(i+1)} -c_{2i-1})\bigg ]\sin (\omega _{0}\tau _{0})\Bigg \}\\&+\bigg [(n+2)(-1)^{k+1}\omega _{0}^{n+1}+n(-1)^{k}\omega _{0}^{n-1}a_{2}\\&+\sum \limits _{i=1}^{(n-1)/2}(n-2i)(-1)^{k-i}\omega _{0}^{n-(2i+1)}(a_{2(i+1)} -c_{2i-1})\bigg ]\\&\times \cos (\omega _{0}\tau _{0})\\&+\bigg [(n+1)(-1)^{k}\omega _{0}^{n}a_{1}+(n-1)(-1)^{k-1}\omega _{0}^{n-2}a_{3}\\&+\sum \limits _{i=1}^{(n-3)/2}(n-(2i+1))(-1)^{k-(i+1)}\omega _{0}^{n-2(i+1)}\\&\times (a_{2i+3)}-c_{2i})\bigg ]\sin (\omega _{0}\tau _{0})\\&+\sum \limits _{i=1}^{(n+1)/2}(n-2(i-1))(-1)^{k-(i-1)}\omega _{0}^{n-(2i-1)} b_{2i-1}, \end{aligned}$$
$$\begin{aligned} N_{22}=&\,\tau _{0}\Bigg \{\bigg [(-1)^{k+1}\omega _{0}^{n+1}a_{1}+(-1)^{k}\omega _{0}^{n-1}a_{3}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega _{0}^{n-(2i+1)}(a_{2i+3} -c_{2i})\bigg ]\sin (\omega _{0}\tau _{0})\\&+\bigg [(-1)^{k+1}\omega _{0}^{n+2}+(-1)^{k}\omega _{0}^{n}a_{2}\\&+\sum \limits _{i=1}^{(n-1)/2}(-1)^{k-i}\omega _{0}^{n-2i}(a_{2(i+1)} -c_{2i-1})\bigg ]\cos (\omega _{0}\tau _{0})\Bigg \}\\&+\bigg [(n+2)(-1)^{k+1}\omega _{0}^{n+1}+n(-1)^{k}\omega _{0}^{n-1}a_{2}\\&+\sum \limits _{i=1}^{(n-1)/2}(n-2i)(-1)^{k-i}\omega _{0}^{n-(2i+1)}(a_{2(i+1)} -c_{2i-1})\bigg ]\\&\times \sin (\omega _{0}\tau _{0})\\&-\bigg [(n+1)(-1)^{k}\omega _{0}^{n}a_{1}+(n-1)(-1)^{k-1}\omega _{0}^{n-2}a_{3}\\&+\sum \limits _{i=1}^{(n-3)/2}(n-(2i+1))(-1)^{k-(i+1)}\omega _{0}^{n-2(i+1)}\\&\times (a_{2i+3)}+c_{2i})\bigg ]\cos (\omega _{0}\tau _{0})\\&+\sum \limits _{i=1}^{(n-1)/2}(n-2(i-1))(-1)^{k-i}\omega _{0}^{n-(2i-1)} b_{2i-1}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Cao, J., Alofi, A. et al. Dynamics and control in an \(({\varvec{n}}+{\varvec{2}})\)-neuron BAM network with multiple delays. Nonlinear Dyn 87, 313–336 (2017). https://doi.org/10.1007/s11071-016-3045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3045-1

Keywords

Navigation