Skip to main content
Log in

Soliton dynamics in the three-spine \(\alpha \)-helical protein with inhomogeneous effect

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study a three-coupled variable-coefficient nonlinear Schrödinger equation, which describes soliton dynamics in the three-spine \(\alpha \)-helical protein with inhomogeneous effect, and analytically obtain multi-soliton solutions, whose formation originates from the dynamical balance between the dispersion owing to the resonant interaction of intrapeptide dipole vibrations and the nonlinear interaction provided by those vibrations with the local displacements of the peptide groups. Using these analytical solutions as initial solutions, we discuss the dynamical behaviors of solitonic interactions and the influence of the protein inhomogeneity on shape-changing collisions of solitons by direct numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Biswas, A., Khan, K.R., Milovic, D., Belic, M.: Bright and dark solitons in optical metamaterials. Optik 125, 3299–3302 (2014)

    Article  Google Scholar 

  2. Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221–1230 (2015)

    Article  MathSciNet  Google Scholar 

  3. Zhou, Q., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H.: Exact optical solitons in metamaterials with cubicCquintic nonlinearity and third-order dispersion. Nonlinear Dyn. 80, 1365–1371 (2015)

    Article  Google Scholar 

  4. Chen, Y.X., Jiang, Y.F., Xu, Z.X., Xu, F.Q.: Nonlinear tunnelling effect of combined Kuznetsov-Ma soliton in (3+1)-dimensional PT-symmetric inhomogeneous nonlinear couplers with gain and loss. Nonlinear Dyn 82, 589–597 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chen, H.Y., Zhu, H.P.: Controllable behaviors of spatiotemporal breathers in a generalized variable-coefficient nonlinear Schrodinger model from arterial mechanics and optical fibers. Nonlinear Dyn. 81, 141–149 (2015)

    Article  MathSciNet  Google Scholar 

  6. Zhou, Q., Zhong, Y., Mirzazadeh, M., Bhrawy, A.H., Zerrad, E., Biswas, A.: Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. Waves Random Complex Media 26, 204–210 (2016)

    Article  MathSciNet  Google Scholar 

  7. Zhou, Q., Zhu, Q., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Rom. Acad. Ser. A 16, 152–159 (2015)

    MathSciNet  Google Scholar 

  8. Zhou, Q., Zhu, Q., Yu, H., Liu, Y., Wei, C., Yao, P., Bhrawy, A.H., Biswas, A.: Bright, dark and singular optical solitons in a cascaded system. Laser Phys. 25, 025402 (2015)

    Article  Google Scholar 

  9. Zhou, Q., Liu, S.: Dark optical solitons in quadratic nonlinear media with spatio-temporal dispersion. Nonlinear Dyn. 81, 733–738 (2015)

    Article  MathSciNet  Google Scholar 

  10. Davydov, A.S.: The role of solitons in the energy and electron transfer in one-dimensional molecular systems. Phys. D 3, 1–22 (1981)

    Article  Google Scholar 

  11. Scott, A.C.: Davydov’s soliton. Phys. Rep. 217, 1–67 (1992)

    Article  MATH  Google Scholar 

  12. Sinkala, Z.: Soliton/exciton transport in proteins. J. Theor. Biol. 919–927, 241 (2006)

    MathSciNet  Google Scholar 

  13. Brizhik, L., Eremko, A., Piette, B., Zakrzewski, W.: Solitons in \(\alpha \)-helical proteins. Phys. Rev. E 70, 031914 (2004)

    Article  MathSciNet  Google Scholar 

  14. Brizhik, L., Ctruzeiro-Hansson, L., Eremko, A.: Electromagnetic radiation influence on nonlinear charge and energy transport in biosystems. J. Biol. Phys. 24, 223–232 (1999)

    Article  Google Scholar 

  15. Pang, X.F.: Comment on “Thermodynamic properties of \(\alpha \)-helix protein: A soliton approach,”. Phys. Rev. E 49, 4747–4752 (1994)

    Article  Google Scholar 

  16. Pang, X.F.: Improvement of the Davydov theory of bioenergy transport in protein molecular systems. Phys. Rev. E 62, 6989–6998 (2000)

    Article  Google Scholar 

  17. Herrera, J., Maza, M.A., Minzoni, A.A., Smyth, N.F., Worthy, A.L.: Davydov soliton evolution in temperature gradients driven by hyperbolic waves. Phys. D 191, 156–177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Afanasyev, V.V., Dianov, E.M., Prokhorov, A.M., Serkin, V.N.: JETP Lett. 48, 638–642 (1988)

    Google Scholar 

  19. Afanasyev, V.V., Kivshar, Y.S., Konotop, V.V., Serkin, V.N.: Dynamics of coupled dark and bright optical solitons. Opt. Lett. 14, 805–807 (1989)

    Article  Google Scholar 

  20. Kivshar, Y.S., Anderson, D., Hook, A., Lisak, M., Afanasjev, A.A., Serkin, V.N.: Symbiotic optical solitons and modulational instability. Phys. Scr. 44, 195–202 (1991)

    Article  Google Scholar 

  21. Qin, B., Tian, B., Liu, W.J., Liu, L.C., Qu, Q.X., Zhang, H.Q.: solitonic excitations and interactions in the three-spine \(\alpha \)-helical protein with in homogeneity. SIAM J. Appl. Math. 71, 1317–1353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Förner, W.: Quantum and disorder effects in Davydov soliton theory. Phys. Rev. A 44, 2694–2708 (1991)

    Article  Google Scholar 

  23. Pang, X.F., Feng, Y.P.: Quantum Mechanics in Nonlinear Systems. World Scientific Publishing, Hackensack, NJ (2005)

  24. Pang, X.F., Yu, J.F.: Influences of structure disorder and temperature on properties of proton conductivity in hydrogen-bond molecular systems. Commun. Theor. Phys. 47, 235–243 (2007)

    Article  Google Scholar 

  25. Serkin, V.N., Hasegawa, A.: Novel Soliton Solutions of the Nonlinear Schrodinger Equation Model. Phys. Rev. Lett. 85, 4502–4505 (2000)

    Article  Google Scholar 

  26. Serkin, V.N., Hasegawa, A.: Soliton management in the nonlinear Schrodinger equation model with varying dispersion, nonlinearity, and gain. JETP Lett. 72, 89–92 (2000)

    Article  Google Scholar 

  27. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  28. Qin, B., Tian, B., Liu, W.J., Zhang, H.Q., Qu, Q.X., Liu, L.C.: Solitonic excitations and interactions in an \(\alpha \)-helical protein modeled by three coupled nonlinear Schrödinger equations with variable coefficients. J. Phys. A: Math. Theor. 43, 485201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y17F050046) and the National Natural Science Foundation of China (Grant No. 11375007). Dr. Chao-Qing Dai is also sponsored by the Foundation of New Century “151 Talent Engineering” of Zhejiang Province of China and Youth Top-notch Talent Development and Training Program of Zhejiang A&F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Qing Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, LQ., Liu, J., Jin, DQ. et al. Soliton dynamics in the three-spine \(\alpha \)-helical protein with inhomogeneous effect. Nonlinear Dyn 87, 83–92 (2017). https://doi.org/10.1007/s11071-016-3027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3027-3

Keywords

Navigation