Skip to main content
Log in

Robust motion planning for a heat rod process

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

First, heat rod models linking temperature to heat flux density are obtained from system identification using fractional order systems. Then, motion planning of the nominal system is obtained through an open-loop control stemming from flatness principles. Usually, each model should have its own control reference in order to follow a desired output reference. Thanks to a third-generation CRONE controller, the nominal control reference is sufficient, and robust control is also guaranteed regarding model uncertainties and input/output disturbances. Robust motion planning is held on a real heat experiment and comparison between CRONE and PID controllers are proposed on this test bench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The main properties of \(\mathbb {R}\left[ {\mathbf{D }}^\gamma \right] \) are recalled in [37].

References

  1. Amini, A., Azarbahram, A., Sojoodi, M.: \({H}_\infty \) consensus of nonlinear multi-agent systems using dynamic output feedback controller: an LMI approach. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2801-6

    MathSciNet  Google Scholar 

  2. Antritter, F., Cazaurang, F., Lévine, J., Middeke, J.: On the computation of \(\pi \)-flat outputs for differential-delay linear systems. Syst. & Control Lett. 71, 14–22 (2014). doi:10.1016/j.sysconle.2014.07.002

    Article  MATH  Google Scholar 

  3. Antritter, F., Middeke, J.: A toolbox for the analysis of linear systems with delays. In: CDC/ECC 2011, pp. 1950–1955. Orlando, USA (2011)

  4. Aoun, M., Malti, R., Levron, F., Oustaloup, A.: Synthesis of fractional laguerre basis for system approximation. Automatica 43, 1640–1648 (2007). doi:10.1016/j.automatica.2007.02.013

    Article  MathSciNet  MATH  Google Scholar 

  5. Battaglia, J.L., Le Lay, L., Batsale, J.C., Oustaloup, A., Cois, O.: Heat flux estimation through inverted non integer identification models. Int. J. Therm. Sci. 39(3), 374–389 (2000). doi:10.1016/S1290-0729(00)00220-9

    Article  Google Scholar 

  6. Battig, A., Kalla, S.: On Mikusinski’s operators of fractional integration. Revista Colombiana de Matemáticas IX, 155–160 (1975)

    MathSciNet  MATH  Google Scholar 

  7. Benchellal, A., Bachir, S., Poinot, T., Trigeassou, J.C.: Identification of a non-integer model of induction machines. In: 1st IFAC Workshop on Fractional Differentiation and its Applications (FDA), pp. 400–407. Bordeaux, France (2004)

  8. Brunovský, P.: A classification of linear controllable systems. Kybernetika 6, 176–178 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohn, P.M.: Free Rings and Their Relations. Academic Press, London (1985)

    MATH  Google Scholar 

  10. Cois, O., Oustaloup, A., Poinot, T., Battaglia, J.L.: Fractional state variable filter for system identification by fractional model. In: 6th European Control Conference ECC’01. Porto, Portugal (2001)

  11. Farges, C., Fadiga, L., Sabatier, J.: \({H}_\infty \) analysis and control of commensurate fractional order systems. Mechatronics 23(7), 772–780 (2013). doi:10.1016/j.mechatronics.2013.06.005

    Article  MATH  Google Scholar 

  12. Fliess, M.: Some basic structural properties of generalized linear systems. Syst. Control Lett. 15, 391–396 (1990). doi:10.1016/0167-6911(90)90062-Y

    Article  MathSciNet  MATH  Google Scholar 

  13. Fliess, M., Hotzel, R.: Sur les systèmes linéaires à dérivation non entière. Comptes Rendus de l’Académie des Sci. - Series IIB - Mech.-Phys.-Chem.-Astron. 324(2), 99–105 (1997). doi:10.1016/S1251-8069(99)80013-X

    Article  MATH  Google Scholar 

  14. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Sur les systèmes non linéaires différentiellement plats. Comptes Rendus de l’Académie des Sci. I–315, 619–624 (1992)

    MATH  Google Scholar 

  15. Gabano, J.D., Poinot, T., Kanoun, H.: Identification of a thermal system using continuous linear parameter-varying fractional modelling. IET Control Theory & Appl. 5(7), 889–899 (2011). doi:10.1049/iet-cta.2010.0222

    Article  MathSciNet  Google Scholar 

  16. Garnier, H., Wang, L.: Identification of Continuous-time Models from Sampled Data. Springer-Verlag, Berlin (2008)

    Book  Google Scholar 

  17. Heymans, N., Bauwens, J.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 33, 219 (1994). doi:10.1007/BF00437306

    Article  Google Scholar 

  18. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  19. Lamara, A., Colin, G., Lanusse, P., Charlet, A., Nelson-Gruel, D., Chamaillard, Y.: Pollutant reduction of a turbocharged diesel engine using a decentralized MIMO CRONE controller. Fract. Calc. Appl. Anal. 18(2), 307–332 (2015). doi:10.1515/fca-2015-0021

    Article  MathSciNet  MATH  Google Scholar 

  20. Lévine, J.: Analysis and Control of Nonlinear Systems a Flatness-based Approach. Springer, Berlin Heidelberg (2009)

    Book  MATH  Google Scholar 

  21. Lévine, J., Nguyen, D.V.: Flat output characterization for linear systems using polynomial matrices. Syst. & Control Lett. 48, 69–75 (2003). doi:10.1016/S0167-6911(02)00257-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Ljung, L.: System Identification - Theory for the User, 2nd edn. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  23. Maachou, A., Malti, R., Melchior, P., Battaglia, J., Oustaloup, A., Hay, B.: Nonlinear thermal system identification using fractional Volterra series. Control Eng. Pract. 29, 50–60 (2014). doi:10.1016/j.conengprac.2014.02.023

    Article  Google Scholar 

  24. Malti, R., Sabatier, J., Akçay, H.: Thermal modeling and identification of an aluminium rod using fractional calculus. In: 15th IFAC Symposium on System Identification (SYSID’2009), pp. 958–963. St Malo, France (2009). doi:10.3182/20090706-3-FR-2004.00159

  25. Malti, R., Victor, S., Oustaloup, A.: Advances in system identification using fractional models. J. Comput. Nonlinear Dyn. 3, 021,401.1–021,401.7 (2008). doi:10.1115/1.2833910

    Article  Google Scholar 

  26. Matignon, D., d’Andréa-Novel, B.: Some results on controllability and observability of finite-dimensional fractional differential systems. In: IMACS, vol. 2, pp. 952–956. IEEE-SMC, Lille, France (1996)

  27. Mikusiński, J.: Operational Calculus. Pergamon Press, PWN Polish Scientific Publishers, Warsaw (1983)

    MATH  Google Scholar 

  28. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, Hoboken (1993)

    MATH  Google Scholar 

  29. Oldham, K., Spanier, J.: The replacement of Fick’s laws by a formulation involving semi-differentiation. J. Electroanal. Chem. Interfacial Electrochem. 26(2–3), 331–341 (1970). doi:10.1016/S0022-0728(70)80316-3

    Article  Google Scholar 

  30. Oustaloup, A.: La commande CRONE. Hermès - Paris (1991)

  31. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  32. Polderman, J., Willems, J.: Introduction to Mathematical System Theory: A Behavioral Approach. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  33. Qian, S., Zi, B., Ding, H.: Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn. 83(1), 89–108 (2016). doi:10.1007/s11071-015-2313-9

  34. Rodrigues, S., Munichandraiah, N., Shukla, A.K.: A review of state of charge indication of batteries by means of A.C. impedance measurements. J. Power Sour. 87(1–2), 12–20 (2000). doi:10.1016/S0378-7753(99)00351-1

    Article  Google Scholar 

  35. Sabatier, J., Merveillaut, M., Francisco, J., Guillemard, F., Porcelatto, D.: Lithium-ion batteries modeling involving fractional differentiation. J. Power Sour. 262, 36–43 (2014). doi:10.1016/j.jpowsour.2014.02.071

    Article  Google Scholar 

  36. Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013). doi:10.1016/j.automatica.2013.01.026

    Article  MathSciNet  MATH  Google Scholar 

  37. Victor, S., Melchior, P., Lévine, J., Oustaloup, A.: Flatness for linear fractional systems with application to a thermal system. Automatica 57, 213–221 (2015). doi:10.1016/j.automatica.2015.04.021

  38. Young, P., Jakeman, A.: Refined instrumental variable methods of time-series analysis: part III, extensions. Int. J. Control 31, 741–764 (1980). doi:10.1080/00207178008961080

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Victor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Victor, S., Melchior, P., Malti, R. et al. Robust motion planning for a heat rod process. Nonlinear Dyn 86, 1271–1283 (2016). https://doi.org/10.1007/s11071-016-2963-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2963-2

Keywords

Navigation