Skip to main content
Log in

A novel approach for identification of cascade of Hammerstein model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel approach is proposed to identify the cascade of Hammerstein model by using Volterra series analytical method. The cascade of Hammerstein model consists of power series associated with linear subsystems. The relationship between the cascade of Hammerstein model and its associated Volterra model is firstly presented in this paper. The basic routine of the identification approach is that, from the system outputs under multilevel excitations, the Volterra series outputs of different order are first estimated by using the wavelet balance method. Then, through each order Volterra outputs and input, the impulse response functions of each order linear subsystems can be estimated, respectively. The simulation studies verify the effectiveness of the proposed identification method for the cascade of Hammerstein model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen, S., Billings, S.A.: Representations of non-linear systems: the NARMAX model. Int. J. Control 49, 1013–1032 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Peng, Z.K., Lang, Z.Q., Wolters, C., et al.: Feasibility study of structural damage detection using NARMAX modelling and nonlinear output frequency response function based analysis. Mech. Syst. Signal Process. 25, 1045–1061 (2011)

  3. Guo, Y.Z., Guo, L.Z., Billings, S.A., et al.: Volterra series approximation of a class of nonlinear dynamical systems using the Adomian decomposition method. Nonlinear Dyn. 74, 359–371 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sigrist, Z., Grivel, E., Alcoverro, B.: Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method. Signal Process. 92, 1010–1020 (2012)

    Article  Google Scholar 

  5. Hsu, C.F.: Nonlinear system control using a self-organizing functional-linked neuro-fuzzy network. Nonlinear Dyn. 73, 1631–1643 (2013)

    Article  MathSciNet  Google Scholar 

  6. Mushage, B.O., Chedjou, J.C., Kyamakya, K.: An extended Neuro-Fuzzy-based robust adaptive sliding mode controller for linearizable systems and its application on a new chaotic system. Nonlinear Dyn. 83, 1601–1619 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cai, Z., Bai, E.W.: Making parametric Hammerstein system identification a linear problem. Automatica 47, 1806–1812 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Umoh, I.J., Ogunfunmi, T.: An affine projection- based algorithm for identification of nonlinear Hammerstein systems. Signal Process. 90, 2020–2030 (2010)

    Article  MATH  Google Scholar 

  9. Yu, F., Mao, Z., Jia, M., et al.: Recursive parameter identification of Hammerstein-Wiener systems with measurement noise. Signal Process. 105, 137–147 (2014)

    Article  Google Scholar 

  10. Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York (1980)

    MATH  Google Scholar 

  11. Rugh, W.J.: Nonlinear System Theory: The Volterra-Wiener Approach. Johns Hopkins University Press, Baltimore (1980)

    MATH  Google Scholar 

  12. Billings, S.A., Lang, Z.Q.: Non-linear systems in the frequency domain: energy transfer filters. Int. J. Control 75, 1066–1081 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, P., Wei, H.L., Billings, S.A.: Nonlinear model identification from multiple data sets using an orthogonal forward search algorithm. J. Comput. Nonlinear Dyn. 8, 041001 (2013)

    Article  Google Scholar 

  14. Ogunfunmi, T.: Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches. Springer, New York (2007)

    Book  MATH  Google Scholar 

  15. Silva, W.: Identification of nonlinear aeroelastic systems based on the Volterra theory: progress and opportunities. Nonlinear Dyn. 39, 25–62 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, Y., Hunter, I.W.: Nonlinear stochastic system identification of skin using volterra kernels. Ann. Biomed. Eng. 41, 847–862 (2013)

    Article  Google Scholar 

  17. Contan, C., Kirei, B.S., Topa, M.D.: Modified NLMF adaptation of Volterra filters used for nonlinear acoustic echo cancellation. Signal Process. 93, 1152–1161 (2013)

    Article  Google Scholar 

  18. Liu, J., Zhang, Y., Yun, B.: A new method for predicting nonlinear structural vibrations induced by ground impact loading. J. Sound Vib. 331, 2129–2140 (2012)

    Article  Google Scholar 

  19. Tawfiq, I., Vinh, T.: Nonlinear behaviour of structures using the Volterra series-signal processing and testing methods. Nonlinear Dyn. 37, 129–149 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. CAS–32, 1150–1161 (1985)

  21. Korenberg, M.J.: Parallel cascade identification and kernel estimation for nonlinear systems. Ann. Biomed. Eng. 19, 429–455 (1991)

    Article  Google Scholar 

  22. Tiels, K., Schoukens, J.: Wiener system identication with generalized orthonormal basis functions. Automatica 50, 3147–3154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schoukens, J., Pintelon, R., Rolain, Y., et al.: Structure discrimination in block-oriented models using linear approximations: a theoretic framework. Automatica 53, 225–234 (2015)

    Article  MathSciNet  Google Scholar 

  24. Gomez, J.C., Baeyens, E.: Identification of block-oriented nonlinear systems using orthonormal bases. J. Process Control 14, 685–697 (2004)

    Article  Google Scholar 

  25. Zeng, J., Baldelli, D.H., Brenner, M.: Identification of nonlinear Hammerstein system using orthonormal bases: application to nonlinear aeroelastic /aeroservoelastic system. J. Guid. Control Dyn. 31, 1677–1686 (2008)

    Article  Google Scholar 

  26. Novak, A., Maillou, B., Lotton, P., et al.: Nonparametric identification of nonlinear systems in series. IEEE Trans. Instrum. Meas. 63, 2044–2051 (2014)

    Article  Google Scholar 

  27. Novak, A., Simon, L., Kadlec, F., et al.: Nonlinear system identification using exponential swept-sine signal. IEEE Trans. Instrum. Meas. 59, 2220–2229 (2010)

    Article  Google Scholar 

  28. Farina, A.: Simultaneous measurement of impulse response and distortion with a swept-sine technique. In: 108th Convention of the Audio Engineering Society (2000)

  29. Farina, A., Bellini, A., Armelloni, E.: Non-linear convolution: a new approach for the auralization of distorting systems. In: 110th Convention of Audio Engineering Society (2001)

  30. Rébillat, M., Hennequin, R., Corteel, É., et al.: Identification of cascade of Hammerstein models for the description of nonlinearities in vibrating devices. J. Sound Vib. 330, 1018–1038 (2011)

    Article  Google Scholar 

  31. Rébillat, M., Hajrya, R., Mechbal, N.: Nonlinear structural damage detection based on cascade of Hammerstein models. Mech. Syst. Signal Process. 48, 247–259 (2014)

    Article  Google Scholar 

  32. Cheng, C.M., Peng, Z.K., Zhang, W.M., et al.: Wavelet basis expansion-based Volterra kernel function identification through multilevel excitations. Nonlinear Dyn. 76, 985–999 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cheng, C.M., Dong, X.J., Peng, Z.K., Zhang, W.M., et al.: Wavelet basis expansion-based spatio-temporal Volterra kernels identification for nonlinear distributed parameter systems. Nonlinear Dyn. 78, 1179–1192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lang, Z.Q., Billings, S.A.: Energy transfer properties of non-linear systems in the frequency domain. Int. J. Control 78, 345–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, X., Hu, B., Ling, X.: A wavelet-balance approach for steady-state analysis of nonlinear circuits. IEEE Trans. Circuits Syst. I Fundam. Theory Appl 49, 689–694 (2002)

    Article  Google Scholar 

  36. Pernot, S., Lamarque, C.H.: A wavelet-balance method to investigate the vibrations of nonlinear dynamical systems. Nonlinear Dyn. 32, 33–70 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ljung, L.: System Identification: Theory for the User. Preniice Hall Inf and System Sciencess Series, New Jersey (1987)

    MATH  Google Scholar 

  38. Shang, Y.: Consensus of noisy multiagent systems with markovian switching topologies and time-varying delays. Math. Probl. Eng. 2015, 453072 (2015)

    MathSciNet  Google Scholar 

  39. Shang, Y.: Group consensus of multi-agent systems in directed networks with noises and time delays. Int. J. Syst. Sci. 46, 2481–2492 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shang, Y.: Synchronization in networks of coupled harmonic oscillators with stochastic perturbation and time delays. Ann. Acad. Rom. Sci. Ser. Math. Appl. 4, 44–58 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work reported in this paper was supported by the Chinese Natural Science Foundation projects with the reference number of 11472170, 51421092 and 11402144 and the STCSM fund (14140711100) and the Chinese Distinguished Young Scholars project No. 11125209 and the China Postdoctoral Science Foundation project 15005188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. K. Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C.M., Peng, Z.K., Zhang, W.M. et al. A novel approach for identification of cascade of Hammerstein model. Nonlinear Dyn 86, 513–522 (2016). https://doi.org/10.1007/s11071-016-2904-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2904-0

Keywords

Navigation