Skip to main content
Log in

Dynamics of a middle ear with fractional type of dissipation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a model of spatial motion of the ossicular chain described as a system of two rigid bodies connected to the temporal bone through the system of particularly chosen massless viscoelastic rods was proposed. Several assumptions regarding the relative motion between incus and malleus, external loading force, distributed pressure of the perilymph on the stapes baseplate behind the oval window, and supporting ligaments were made. In order to avoid merging with fractional partial differential equations, the dissipation of energy due to the deformation of the eardrum is taken into account through deformation of its radial fibers while simple shear deformation pattern of the stapedial annular ligament was replaced by uniaxial deformation of viscoelastic rods. By use of the Gibbs–Appel approach and the complementary constitutive axioms corresponding to the fractional Kelvin–Zener model of viscoelastic body, the equations of motion were derived. The Cauchy problem given in terms of coupled fractional differential equations was transformed in the equivalent integer order form and solved numerically by standard numerical procedures. These results, obtained by means of the Atanackovic–Stankovic expansion formula, were compared with the ones received by use of Laplace’s transform and its numerical inversion. As a principal novelty, this model uses both fractional calculus and recently reported results on mechanical tests performed on human middle ear tissues. Thus, it can be used for either predicting of the middle ear behavior in normal and pathological conditions or simulations preceding implants design within restoration of the hearing function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aernouts, J., Aerts, J.R.M., Dirckx, J.J.J.: Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Hear. Res. 290(1–2), 45–54 (2012)

    Article  Google Scholar 

  2. Ashmore, J.: Signals and Perception: The Fundamentals of Human Sensation, Chapter 1. The Mechanics of Hearing. Palgrave, Open University, Oxford (2002)

    Google Scholar 

  3. Atanacković, T.M.: A modified zener model of a viscoelastic body. Contin. Mech. Thermodyn. 14(2), 137–148 (2002)

  4. Atanacković, T.M., Stanković, B.: An expansion formula for fractional derivatives and its application. Fract. Calc. Appl. Anal. 7(3), 365–378 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Baruh, H.: Analytical Dynamics. WCB/McGraw-Hill, New York (1999)

    Google Scholar 

  6. Berkovitz, B., Kirsch, C., Moxham, B.J., Alusi, G., Cheesman, T.: 3D head and neck anatomy with special senses and basic neuroanatomy (DVD ROM). Primal Pictures Ltd, London (2007)

  7. Brančík, L.: MATLAB for Engineers-Applications in Control, Electrical Engineering, IT and Robotics, Chapter. Numerical Inverse Laplace Transforms for Electrical Engineering Simulation, pp. 51–74. InTech, Osaka (2011)

    Google Scholar 

  8. Cheng, T., Dai, C., Gan, R.Z.: Viscoelastic properties of human tympanic membrane. Ann. Biomed. Eng. 35(2), 305–314 (2007)

    Article  Google Scholar 

  9. Cheng, T., Gan, R.: Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis. Biomech. Model. Mechanobiol. 7(5), 387–394 (2008)

    Article  Google Scholar 

  10. Cheng, T., Gan, R.Z.: Mechanical properties of stapedial tendon in human middle ear. J. Biomech. Eng. Trans. ASME 129, 913 (2007)

    Article  Google Scholar 

  11. Chien, W., Rosowski, J.J., Ravicz, M.E., Rauch, S.D., Smullen, J., Merchant, S.N.: Measurements of stapes velocity in live human ears. Hear. Res. 249(1–2), 54–61 (2009)

  12. Craiem, D., Rojo, F.J., Atienza, J.M., Armentano, R.L., Guinea, G.V.: Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53(17), 4543–4554 (2008)

    Article  Google Scholar 

  13. Dankuc, D.V., Kovinčić, N.I., Spasić, D.T.: A new model for middle ear structures with fractional type dissipation pattern. In: Proceedings of 4th IFAC Workshop on Fractional Differentiation and its Applications (2010)

  14. Decraemer, W.F., Funnell, W.R.J.: Anatomical and mechanical properties of the tympanic membrane. In: Ars, B. (ed.) Chronic Otitis Media: Pathogenesis-Oriented Therapeutic Management, pp. 51–84. Kugler Publications, Amsterdam (2008)

    Google Scholar 

  15. Eiber, A., Freitag, H.G.: On simulation models in otology. Multibody Syst. Dyn. 8, 197–217 (2002)

    Article  MATH  Google Scholar 

  16. Feng, B., Gan, R.Z.: Lumped parametric model of the human ear for sound transmission. Biomech. Model. Mechanobiol. 3, 33–47 (2004)

    Article  Google Scholar 

  17. Ferrazzini, M.: Virtual middle ear: a dynamic mathematical model based on the finite element method. Ph.D. thesis, Technische Wissenschaften ETH Zrich, Zrich (2003)

  18. Gan, R.Z., Feng, B., Sun, Q.: Three-dimensional finite element modeling of human ear for sound transmission. Ann. Biomed. Eng. 32, 847–859 (2004)

    Article  Google Scholar 

  19. Gan, R.Z., Yang, F., Zhang, X., Nakmali, D.: Mechanical properties of stapedial annular ligament. Med. Eng. Phys. 33(3), 330–339 (2011)

    Article  Google Scholar 

  20. Garland, P.: A lumped parameter mechanical model of tensor tympani muscle contraction of the middle ear. In: Proceedings of Meetings on Acoustics, vol. 11(1), pp. 050001 (2011)

  21. Goode, R.L., Killion, M., Nakamura, K., Nishihara, S.: New knowledge about the function of the human middle ear: development of an improved analog model. Otol. Neurotol. 15, 145–145 (1994)

    Google Scholar 

  22. Hato, N., Stenfelt, S., Goode, R.L.: Three-dimensional stapes footplate motion in human temporal bones. Audiol. Neurotol. 8(3), 140–152 (2003)

    Article  Google Scholar 

  23. Huber, A., Linder, T., Ferrazzini, M., Schmid, S., Dillier, N., Stoeckli, S., Fisch, U., et al.: Intraoperative assessment of stapes movement. Ann. Otol. Rhinol. Laryngol. 110(1), 31–35 (2001)

    Article  Google Scholar 

  24. Huber, A.M., Schwab, C., Linder, T., Stoeckli, S.J., Ferrazzini, M., Dillier, N., Fisch, U.: Evaluation of eardrum laser doppler interferometry as a diagnostic tool. Laryngoscope 111(3), 501–507 (2001)

    Article  Google Scholar 

  25. Hudde, H., Weistenhöfer, C.: Key features of the human middle ear. ORL 68(6), 324–328 (2006)

    Article  MATH  Google Scholar 

  26. Ionescu, C.M., Kosiński, W., De Keyser, R.: Viscoelasticity and fractal structure in a model of human lungs. Arch. Mech. 62(1), 21–48 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Ionescu, C.M., Machado, J.A.T., De Keyser, R.: Modeling of the lung impedance using a fractional-order ladder network with constant phase elements. IEEE Trans. Biomed. Circuits. Syst. 5(1), 83–89 (2011)

    Article  Google Scholar 

  28. Machado, J.T., Mainardi, F., Kiryakova, V.: Fractional calculus: quo vadimus? (where are we going?). Fract. Calc. Appl. Anal. 18(2), 495–526 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)

    Google Scholar 

  30. Maiti, D., Konar, A.: Approximation of a fractional order system by an integer order model using particle swarm optimization technique. In: IEEE Sponsored Conference on Computational Intelligence, Control And Computer Vision In Robotics and Automation. arXiv:0811.0077 (2008)

  31. Markeev, A.P.: Theoretical Mechanics. Regular and Chaotic Dynamics, Moscow (1999). (in Russian)

  32. Meddis, R., Lopez-Poveda, E.A., Fay, R.R.: Auditory periphery: from pinna to auditory nerve. In: Meddis, R., Lopez-Poveda, E.A., Fay, R.R., Popper, A.N. (eds.) Computational Models of the Auditory System, Springer Handbook of Auditory Research, vol. 35, pp. 7–38. Springer, US (2010)

    Chapter  Google Scholar 

  33. Møller, A.R.: Network model of the middle ear. J. Acoust. Soc. Am. 33, 168–176 (1961)

    Article  Google Scholar 

  34. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering. Academic Press, London (1974)

    MATH  Google Scholar 

  35. Parent, P., Allen, J.B.: Time-domain ”wave” model of the human tympanic membrane. Hear. Res. 263(1–2), 152–167 (2010)

    Article  Google Scholar 

  36. Paul, R.P.: Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators. Artificial Intelligence Series. Mit Press, Cambridge (1981)

    Google Scholar 

  37. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering. Academic Press, London (1999)

    MATH  Google Scholar 

  38. Pooseh, S., Almeida, R., Torres, D.F.: Numerical approximations of fractional derivatives with applications. Asian J. Control 15(3), 698–712 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Prevost, T.P., Jin, G., de Moya, M.A., Alam, H.B., Suresh, S., Socrate, S.: Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vitro. Acta Biomater. 7(12), 4090–4101 (2011)

    Article  Google Scholar 

  40. Ruggero, M.A., Temchin, A.N.: Middle-ear transmission in humans: wide-band, not frequency-tuned? Acoust. Res. Lett. Online 4, 53–58 (2003)

    Article  Google Scholar 

  41. Šercer, A.: Otorhinolaryngology. Yugoslav Lexicographical Institute, Zagreb (1966). (in Serbo-Croatian)

    Google Scholar 

  42. Sim, J.H., Chatzimichalis, M., Lauxmann, M., Röösli, C., Eiber, A., Huber, A.M.: Complex stapes motions in human ears. JARO J. Assoc. Res. Otolaryngol. 11(3), 329–341 (2010)

    Article  Google Scholar 

  43. Sim, J.H., Puria, S.: Soft tissue morphometry of the malleus-incus complex from micro-ct imaging. JARO J. Assoc. Res. Otolaryngol. 9(1), 5–21 (2008)

    Article  Google Scholar 

  44. Spasić, D.T., Charalambakis, N.C.: Forced vibrations with fractional type of dissipation. In: Proceedings of the International Conference on Nonsmooth/Nonconvex Mechanics with Applications in Engineering, Thessaloniki, vol. 323 (2002)

  45. Stieger, C., Bernhard, H., Waeckerlin, D., Kompis, M., Burger, J., Haeusler, R., et al.: Human temporal bones versus mechanical model to evaluate three middle ear transducers. J. Rehabil. Res. Dev. 44(3), 407–416 (2007)

    Article  Google Scholar 

  46. Valério, D., Sá da Costa, J.: Finding a fractional model from frequency and time responses. Commun. Nonlinear Sci. Numer. Simul. 15(4), 911–921 (2010)

  47. Varvak, P.: New Methods of Solving Problems of Strength of Materials. Vishaya shkola, Kiev (1977). (in Russian)

    Google Scholar 

  48. Vinagre, B., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  49. Volandri, G., Di Puccio, F., Forte, P., Carmignani, C.: Biomechanics of the tympanic membrane. J. Biomech. 44(7), 1219–1236 (2011)

    Article  Google Scholar 

  50. Volandri, G., Puccio, F.D., Forte, P., Manetti, S.: Model-oriented review and multi-body simulation of the ossicular chain of the human middle ear. Med. Eng. Phys. 34(9), 1339–1355 (2012)

    Article  Google Scholar 

  51. Voss, S., Rosowski, J., Merchant, S., Peake, W.: Acoustic responses of the human middle ear. Hear. Res. 150(1–2), 43–69 (2000)

    Article  Google Scholar 

  52. Weistenhöfer, C., Hudde, H.: Determination of the shape and inertia properties of the human auditory ossicles. Audiol. Neurootol. 4(3–4), 192–196 (1999)

    Article  Google Scholar 

  53. Willi, U.B., Ferrazzini, M.A., Huber, A.M.: The incudo-malleolar joint and sound transmission losses. Hear. Res. 174(1–2), 32–44 (2002)

    Article  Google Scholar 

  54. Zhao, F., Koike, T., Wang, J., Sienz, H., Meredith, R.: Finite element analysis of the middle ear transfer functions and related pathologies. Med. Eng. Phys. 31(8), 907–916 (2009)

  55. Zwislocki, J.: Analysis of the middle-ear function. Part i: input impedance. J. Acoust. Soc. Am. 34, 1514–1523 (1962)

Download references

Acknowledgments

This research was supported by Serbian Ministry of Science Project No 174016. The authors would like to thank Prof. Srboljub S. Simic for helpful discussions concerning this paper and the anonymous reviewers for additional motivation that led them to deep reconsideration of the fractional behavior within real world.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemanja I. Kovincic.

Appendix

Appendix

In order to illustrate how the proposed model works practically, the references describing ossicular chain and the tissues included in its suspension system were examined, and the values of inertial, rheological, and geometrical parameters were selected as follows.

The inertial properties of stapes and IMB listed in Table 1 were taken from [52]. The positions of characteristic points of the stapes and IMB, determined on the basis of their orthogonal projections given in Figs. 4 and 5 of reference [52], are shown in Tables 2 and 3, respectively.

Table 1 Inertial properties of the rigid bodies, taken from [52]
Table 2 Positions of the stapes characteristic points determined from [52]
Table 3 Positions of IMB characteristic points determined from [52]

From the same paper, one can obtain the orthogonal matrices describing the orientations of the coordinate systems \(C_{1}x_{1}y_{1}z_{1}\) and \(C_{2}x_{2}y_{2}z_{2},\) with respect to the inertial one, in our notation

$$\begin{aligned}&\mathbf {K}_{1}= \begin{pmatrix} 0.9920 &{} -0.1257 &{} -0.0113 \\ 0.1258 &{} 0.9920 &{} 0.0113 \\ 0.0098 &{} -0.0127 &{} 0.9998 \end{pmatrix},\\&\mathbf {K}_{2}= \begin{pmatrix} 0.9033 &{} -0.2410 &{} -0.3549 \\ 0.2129 &{} 0.9700 &{} -0.1170 \\ 0.3725 &{} 0.0301 &{} 0.9275 \end{pmatrix}. \end{aligned}$$

Positions on IMB to which the viscoelastic rods are connected was taken from [43]. The radius vectors of these points are listed in Table 4.

Table 4 Positions of the characteristic points on IMB to which the viscoelastic rods are connected, taken from [43]

The unit vectors describing the directions of the forces acting on stapes, \( \varvec{\kappa }_{1k}= \begin{bmatrix} 1&0&0 \end{bmatrix} ^\mathrm{{T}},\) \(k=1\div 4,\) and \(\varvec{\kappa }_{15}= \begin{bmatrix} 0&1&0 \end{bmatrix} ^\mathrm{{T}},\) were obtained from the anatomy of the middle ear, see [6]. The ones describing the directions of the ligaments connected to IMB are determined from [43] and shown in Table 5.

Table 5 Unit vectors of IMB ligaments determined from [43]

The unit vectors corresponding to the eardrum radial fibers used and the direction of loading force are determined using Fig. 5 of [14] and are listed in Table 6.

Table 6 Unit vectors of the forces related to two functions of the eardrum, determined from [14]

Assuming the constant thickness of the stapedial annular ligament, the initial length and cross-sectional area of the rods used instead were taken from [19], and are \(l_{1k}=0.07\) mm and \(A_{1k}=0.4378\) mm\( ^{2},\) \(k=1\div 4.\), respectively. The initial length and cross-sectional area of the rod used instead of the tendon of stapedial muscle were taken from [10] and read \(l_{1k}=0.99\) mm and \(A_{1k}=0.156\) mm\(^{2},\) respectively.

The initial lengths and cross-sectional areas of the rods substituting for the ligaments of IMB were taken from [43] and are listed in Table 7.

Table 7 Initial lengths and cross-sectional areas of the rods substituting for the ligaments of IMB, taken from [43]

The initial lengths of the viscoelastic rods that will take the eardrum energy dissipation were \(l_{26}=3.668\) mm, \(l_{27}=3.2\) mm and \(l_{28}=4.452\) mm, while the area of their cross sections is assumed to be the same \( A_{2i}=1\) mm\(^{2}\), \(i=6\div 8.\)

The biorheological parameters of the fractional Kelvin–Zener model describing soft tissues of the middle ear are taken from [13] and shown in Tables 8 and 9. Following the same procedure as described therein, the rheological parameters of the annular ligament of the stapes were determined on the basis of experimental results presented in [19]. These parameters are also shown in Table 8 and denoted by \(^{*}\).

Table 8 Stapes rheological parameters of the fractional Kelvin–Zener model, taken from [13]
Table 9 IMB rheological parameters of the fractional Kelvin–Zener model, taken from [13]

The parameters of the total force and the total moment used to estimate the distributed pressure of perilymph on the stapes baseplate are, respectively, \( k_{1}=0.2\) Ns/m and \(k_{2}=1\mathbf \,{\times }\,10^{-6}\) Nms. The value of \(k_{1}\) was taken from [18]. The value of \(k_{2}\) is taken to be very small due to the dimensions of the stapes baseplate and because the rotation of stapes baseplate causes very small changes in net volume of perilymph in the inner ear.

Finally, matrices \(\mathbf {M}_{1},~\mathbf {M}_{2},~\mathbf {M}_{3}\), and vector \(\mathbf {V}_{1}\) in system of Eq. (12) are as follows.

The elements of symmetric matrix \(\mathbf {M}_{1}=\left[ m_{ij}^{1}\right] _{6\times 6},\) read

$$\begin{aligned} m_{11}^{1}= & {} \left( B_{1}+B_{2}\right) , \\ m_{12}^{1}= & {} m_{21}^{1}=\left( B_{1}\nu _{C_{1}}^{O_{1}}+B_{2}\nu _{Z}^{O_{1}}\right) , \\ m_{13}^{1}= & {} m_{31}^{1}=-\left( B_{1}\mu _{C_{1}}^{O_{1}}+B_{2}\mu _{Z}^{O_{1}}\right) , \\ \end{aligned}$$
$$\begin{aligned} m_{14}^{1}= & {} m_{41}^{1}=B_{2}\left( k_{13}^{2}\eta _{C_{2}}^{Z}-k_{12}^{2}\zeta _{C_{2}}^{Z}\right) , \\ m_{15}^{1}= & {} m_{51}^{1}=B_{2}\left( k_{11}^{2}\zeta _{C_{2}}^{Z}-k_{13}^{2}\xi _{C_{2}}^{Z}\right) , \\ m_{16}^{1}= & {} m_{61}^{1}=B_{2}\left( k_{12}^{2}\xi _{C_{2}}^{Z}-k_{11}^{2}\eta _{C_{2}}^{Z}\right) , \end{aligned}$$
$$\begin{aligned} m_{22}^{1}= & {} B_{1}\left( \left( \nu _{C_{1}}^{O_{1}}\right) ^{2}+\left( \lambda _{C_{1}}^{O_{1}}\right) ^{2}\right) \\&+\,\left( k_{21}^{1}\right) ^{2}J_{x_{1}}+\left( k_{22}^{1}\right) ^{2}J_{y_{1}}+\left( k_{23}^{1}\right) ^{2}J_{z_{1}} \\&+\,B_{2}\left( \left( \nu _{Z}^{O_{1}}\right) ^{2}+\left( \lambda _{Z}^{O_{1}}\right) ^{2}\right) , \\ m_{23}^{1}= & {} m_{32}^{1}=k_{21}^{1}k_{31}^{1}J_{x_{1}}+k_{22}^{1}k_{32}^{1}J_{y_{1}}+k_{23}^{1}k_{33}^{1}J_{z_{1}}\\&-B_{1}\mu _{C_{1}}^{O_{1}}\nu _{C_{1}}^{O_{1}} -\,B_{2}\mu _{Z}^{O_{1}}\nu _{Z}^{O_{1}}, \\ m_{24}^{1}= & {} m_{42}^{1}=B_{2}\left( \left( k_{13}^{2}\eta _{C_{2}}^{Z}-k_{12}^{2}\zeta _{C_{2}}^{Z}\right) \nu _{Z}^{O_{1}}\right. \\&\left. +\left( k_{32}^{2}\zeta _{C_{2}}^{Z}-k_{33}^{2}\eta _{C_{2}}^{Z}\right) \lambda _{Z}^{O_{1}}\right) , \\ m_{25}^{1}= & {} m_{52}^{1}=B_{2}\left( \left( k_{11}^{2}\zeta _{C_{2}}^{Z}-k_{13}^{2}\xi _{C_{2}}^{Z}\right) \nu _{Z}^{O_{1}}\right. \\&\left. +\left( k_{33}^{2}\xi _{C_{2}}^{Z}-k_{31}^{2}\zeta _{C_{2}}^{Z}\right) \lambda _{Z}^{O_{1}}\right) , \\ \end{aligned}$$
$$\begin{aligned} m_{26}^{1}= & {} m_{62}^{1}=B_{2}\left( \left( k_{12}^{2}\xi _{C_{2}}^{Z}-k_{11}^{2}\eta _{C_{2}}^{Z}\right) \nu _{Z}^{O_{1}}\right. \\&\left. +\left( k_{31}^{2}\eta _{C_{2}}^{Z}-k_{32}^{2}\xi _{C_{2}}^{Z}\right) \lambda _{Z}^{O_{1}}\right) , \\ m_{33}^{1}= & {} B_{1}\left( \left( \mu _{C_{1}}^{O_{1}}\right) ^{2}+\left( \lambda _{C_{1}}^{O_{1}}\right) ^{2}\right) +\left( k_{31}^{1}\right) ^{2}J_{x_{1}}\\&+\left( k_{32}^{1}\right) ^{2}J_{y_{1}}+\left( k_{33}^{1}\right) ^{2}J_{z_{1}} \\&+\,B_{2}\left( \left( \mu _{Z}^{O_{1}}\right) ^{2}+\left( \lambda _{Z}^{O_{1}}\right) ^{2}\right) , \\ m_{34}^{1}= & {} m_{43}^{1}=B_{2}\left( \left( k_{12}^{2}\zeta _{C_{2}}^{Z}-k_{13}^{2}\eta _{C_{2}}^{Z}\right) \mu _{Z}^{O_{1}}\right. \\&\left. +\left( k_{23}^{2}\eta _{C_{2}}^{Z}-k_{22}^{2}\zeta _{C_{2}}^{Z}\right) \lambda _{Z}^{O_{1}}\right) , \\ m_{35}^{1}= & {} m_{53}^{1}=B_{2}\left( \left( k_{13}^{2}\xi _{C_{2}}^{Z}-k_{11}^{2}\zeta _{C_{2}}^{Z}\right) \mu _{Z}^{O_{1}}\right. \\&\left. +\left( k_{21}^{2}\zeta _{C_{2}}^{Z}-k_{23}^{2}\xi _{C_{2}}^{Z}\right) \lambda _{Z}^{O_{1}}\right) , \\ m_{36}^{1}= & {} m_{63}^{1}=B_{2}\left( \left( k_{11}^{2}\eta _{C_{2}}^{Z}-k_{12}^{2}\xi _{C_{2}}^{Z}\right) \mu _{Z}^{O_{1}}\right. \\&\left. +\left( k_{22}^{2}\xi _{C_{2}}^{Z}-k_{21}^{2}\eta _{C_{2}}^{Z}\right) \lambda _{Z}^{O_{1}}\right) , \end{aligned}$$
$$\begin{aligned} m_{44}^{1}&=B_{2}\left( \left( k_{13}^{2}\eta _{C_{2}}^{Z}-k_{12}^{2}\zeta _{C_{2}}^{Z}\right) ^{2}+\left( k_{23}^{2}\eta _{C_{2}}^{Z}-k_{22}^{2}\zeta _{C_{2}}^{Z}\right) ^{2}\right. \\&\quad \ +\left. \left( k_{33}^{2}\eta _{C_{2}}^{Z}-k_{32}^{2}\zeta _{C_{2}}^{Z}\right) ^{2}\right) + J_{x_{2}}, \\ m_{45}^{1}&=m_{54}^{1}=B_{2}\left( k_{13}^{2}\eta _{C_{2}}^{Z}-k_{12}^{2}\zeta _{C_{2}}^{Z}\right) \left( k_{11}^{2}\zeta _{C_{2}}^{Z}-k_{13}^{2}\xi _{C_{2}}^{Z}\right) \\&\quad \ +B_{2}\left( k_{33}^{2}\eta _{C_{2}}^{Z}-k_{32}^{2}\zeta _{C_{2}}^{Z}\right) \left( k_{31}^{2}\zeta _{C_{2}}^{Z}-k_{33}^{2}\xi _{C_{2}}^{Z}\right) \\&\quad \ +B_{2}\left( k_{23}^{2}\eta _{C_{2}}^{Z}-k_{22}^{2}\zeta _{C_{2}}^{Z}\right) \left( k_{21}^{2}\zeta _{C_{2}}^{Z}-k_{23}^{2}\xi _{C_{2}}^{Z}\right) , \\ m_{46}^{1}&=m_{64}^{1}=B_{2}\left( k_{13}^{2}\eta _{C_{2}}^{Z}-k_{12}^{2}\zeta _{C_{2}}^{Z}\right) \left( k_{12}^{2}\xi _{C_{2}}^{Z}-k_{11}^{2}\eta _{C_{2}}^{Z}\right) \\&\quad \ +B_{2}\left( k_{33}^{2}\eta _{C_{2}}^{Z}-k_{32}^{2}\zeta _{C_{2}}^{Z}\right) \left( k_{32}^{2}\xi _{C_{2}}^{Z}-k_{31}^{2}\eta _{C_{2}}^{Z}\right) \\&\quad \ +B_{2}\left( k_{23}^{2}\eta _{C_{2}}^{Z}-k_{22}^{2}\zeta _{C_{2}}^{Z}\right) \left( k_{22}^{2}\xi _{C_{2}}^{Z}-k_{21}^{2}\eta _{C_{2}}^{Z}\right) , \\ m_{55}^{1}&=B_{2}\left( \left( k_{11}^{2}\zeta _{C_{2}}^{Z}-k_{13}^{2}\xi _{C_{2}}^{Z}\right) ^{2}+\left( k_{21}^{2}\zeta _{C_{2}}^{Z}-k_{23}^{2}\xi _{C_{2}}^{Z}\right) ^{2}\right. \\&\quad \ +\left. \left( k_{31}^{2}\zeta _{C_{2}}^{Z}-k_{33}^{2}\xi _{C_{2}}^{Z}\right) ^{2}\right) + J_{y_{2}}, \\ m_{56}^{1}&=B_{2}\left( k_{11}^{2}\zeta _{C_{2}}^{Z}-k_{13}^{2}\xi _{C_{2}}^{Z}\right) \left( k_{12}^{2}\xi _{C_{2}}^{Z}-k_{11}^{2}\eta _{C_{2}}^{Z}\right) \\&\quad \ +B_{2}\left( k_{31}^{2}\zeta _{C_{2}}^{Z}-k_{33}^{2}\xi _{C_{2}}^{Z}\right) \left( k_{32}^{2}\xi _{C_{2}}^{Z}-k_{31}^{2}\eta _{C_{2}}^{Z}\right) \\&\quad \ +B_{2}\left( k_{21}^{2}\zeta _{C_{2}}^{Z}-k_{23}^{2}\xi _{C_{2}}^{Z}\right) \left( k_{22}^{2}\xi _{C_{2}}^{Z}-k_{21}^{2}\eta _{C_{2}}^{Z}\right) , \\ m_{66}^{1}&=B_{2}\left( \left( k_{12}^{2}\xi _{C_{2}}^{Z}-k_{11}^{2}\eta _{C_{2}}^{Z}\right) ^{2}+\left( k_{22}^{2}\xi _{C_{2}}^{Z}-k_{21}^{2}\eta _{C_{2}}^{Z}\right) ^{2}\right. \\&\quad \ +\left. \left( k_{32}^{2}\xi _{C_{2}}^{Z}-k_{31}^{2}\eta _{C_{2}}^{Z}\right) ^{2}\right) + J_{z_{2}}. \end{aligned}$$

The elements of \(\mathbf {M}_{2}=\left[ m_{i,j}^{2}\right] _{6\times 13}\) are

$$\begin{aligned}&\displaystyle m_{1,j}^{2}=\kappa _{1jx},~m_{1,i+5}^{2}=\kappa _{2ix},~ \\&\displaystyle m_{2,j}^{2}=\kappa _{1jx}\nu _{1j}^{O_{1}}-\kappa _{1jz}\lambda _{1j}^{O_{1}},\\&m_{2,i+5}^{2}=\kappa _{2ix}\nu _{Z}^{O_{1}}-\kappa _{2iz}\lambda _{Z}^{O_{1}}, \\&\displaystyle m_{3,j}^{2}=\kappa _{1jy}\lambda _{1j}^{O_{1}}-\kappa _{1jx}\mu _{1j}^{O_{1}},~m_{3,i+5}^{2}=\kappa _{2iy}\lambda _{Z}^{O_{1}}-\kappa _{2ix}\mu _{Z}^{O_{1}}, \\&\displaystyle m_{4,j}^{2}=0,\quad m_{5,j}^{2}=0,\quad m_{6,j}^{2}=0, \\ \end{aligned}$$
$$\begin{aligned} \displaystyle m_{4,i+5}^{2}= & {} \kappa _{2ix}\left( k_{13}^{2}\eta _{2i}^{Z}-k_{12}^{2}\zeta _{2i}^{Z}\right) +\kappa _{2iy}\left( k_{23}^{2}\eta _{2i}^{Z}-k_{22}^{2}\zeta _{2i}^{Z}\right) \\&\displaystyle +\,\kappa _{2iz}\left( k_{33}^{2}\eta _{2i}^{Z}-k_{32}^{2}\zeta _{2i}^{Z}\right) , \\ \displaystyle m_{5,i+5}^{2}= & {} \kappa _{2ix}\left( k_{11}^{2}\zeta _{2i}^{Z}-k_{13}^{2}\xi _{2i}^{Z}\right) +\kappa _{2iy}\left( k_{21}^{2}\zeta _{2i}^{Z}-k_{23}^{2}\xi _{2i}^{Z}\right) \\&\displaystyle +\,\kappa _{2iz}\left( k_{31}^{2}\zeta _{2i}^{Z}-k_{33}^{2}\xi _{2i}^{Z}\right) , \\ \displaystyle m_{6,i+5}^{2}= & {} \kappa _{2ix}\left( k_{12}^{2}\xi _{2i}^{Z}-k_{11}^{2}\eta _{2i}^{Z}\right) +\kappa _{2iy}\left( k_{22}^{2}\xi _{2i}^{Z}-k_{21}^{2}\eta _{2i}^{Z}\right) \\&\displaystyle +\,\kappa _{2iz}\left( k_{32}^{2}\xi _{2i}^{Z}-k_{31}^{2}\eta _{2i}^{Z}\right) , \end{aligned}$$

where \(j=1\div 5\) and \(i=1\div 8\), while nontrivial elements of \(\mathbf {M}_{3}=\left[ m_{ij}^{3}\right] _{6\times 6}\) are \(m_{11}^{3}=-k_{1},\) \(m_{22}^{3}=m_{33}^{3}=-k_{2}.\)

Vector \(\mathbf {V}_{1}\) reads

$$\begin{aligned} \mathbf {V}_{1}= \left[ \begin{array}{l} \kappa _{29x} \\ \kappa _{29x}\nu _{Z}^{O_{1}}-\kappa _{29z}\lambda _{Z}^{O_{1}} \\ \kappa _{29y}\lambda _{Z}^{O_{1}}-\kappa _{29x}\mu _{Z}^{O_{1}} \\ \kappa _{29x}\left( k_{13}^{2}\eta _{29}^{Z}-k_{12}^{2}\zeta _{29}^{Z}\right) +\kappa _{29y}\left( k_{23}^{2}\eta _{29}^{Z}-k_{22}^{2}\zeta _{2i9}^{Z}\right) \\ \quad +\,\kappa _{29z}\left( k_{33}^{2}\eta _{29}^{Z}-k_{32}^{2}\zeta _{29}^{Z}\right) \\ \kappa _{29x}\left( k_{11}^{2}\zeta _{29}^{Z}-k_{13}^{2}\xi _{29}^{Z}\right) +\kappa _{29y}\left( k_{21}^{2}\zeta _{29}^{Z}-k_{23}^{2}\xi _{29}^{Z}\right) \\ \quad +\,\kappa _{29z}\left( k_{31}^{2}\zeta _{29}^{Z}-k_{33}^{2}\xi _{29}^{Z}\right) \\ \kappa _{29x}\left( k_{12}^{2}\xi _{29}^{Z}-k_{11}^{2}\eta _{29}^{Z}\right) +\kappa _{29y}\left( k_{22}^{2}\xi _{29}^{Z}-k_{21}^{2}\eta _{29}^{Z}\right) \\ \quad +\,\kappa _{29z}\left( k_{32}^{2}\xi _{29}^{Z}-k_{31}^{2}\eta _{29}^{Z}\right) \end{array}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovincic, N.I., Spasic, D.T. Dynamics of a middle ear with fractional type of dissipation. Nonlinear Dyn 85, 2369–2388 (2016). https://doi.org/10.1007/s11071-016-2832-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2832-z

Keywords

Navigation