Skip to main content
Log in

Robust image-based control of the quadrotor unmanned aerial vehicle

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes an image-based visual servo controller for the quadrotor vertical takeoff and landing unmanned aerial vehicle (UAV). The controller utilizes an estimate of flow of image features as the linear velocity cue and assumes angular velocity and attitude information available for feedback. The image features are selected from perspective image moments and projected on a suitably defined image plane, providing decoupled kinematics for the translational motion. A nonlinear observer is designed to estimate the flow of image features using outputs of visual information. The controller for the translational dynamics is bounded which helps to keep the target points in the field of view of the camera. A smooth asymptotic controller, using the robust integral of the sign of the error method, is designed for the rotational dynamics in order to compensate for the unmodeled dynamics and external disturbances. Furthermore, the proposed approach is robust with respect to unknown image depth through an adaptive scheme and also the yaw information of the UAV is not required. The complete Lyapunov-based stability analysis is presented to show that all states of the system are bounded and the error signals converge to zero. Simulation examples are provided in both nominal and perturbed conditions which show the effectiveness of the proposed theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdessameud, A., Janabi-Sharifi, F.: Dynamic image-based tracking control for VTOL UAVs. In: 2013 IEEE 52nd Annual Conference on Decision and Control, pp. 7666–7671 (2013)

  2. Abdessameud, A., Tayebi, A.: Global trajectory tracking control of VTOL-UAVs without linear velocity measurements. Automatica 46(6), 1053–1059 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdessameud, A., Tayebi, A.: Formation control of VTOL unmanned aerial vehicles with communication delays. Automatica 47(11), 2383–2394 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Altug, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: 2002 IEEE International Conference on Robotics and Automation, vol. 1, pp. 72–77 (2002)

  5. Altuğ, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24, 329–341 (2005)

    Article  Google Scholar 

  6. Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Trans. Robot. 25, 743–749 (2009)

    Article  Google Scholar 

  7. Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based odometry and slam for medium and high altitude flying UAVs. J. Int. Robot. Syst. 54, 137–161 (2009)

    Article  Google Scholar 

  8. Chaumette, F., Hutchinson, S.: Visual servo control. II. Advanced approaches. IEEE Robot. Autom. Mag. 14, 109–118 (2007)

    Article  Google Scholar 

  9. Fink, G., Xie, H., Lynch, A.F., Jagersand, M.: Experimental validation of dynamic visual servoing for a quadrotor using a virtual camera. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1231–1240 (2015)

  10. Fink, G., Xie, H., Lynch, A.F., Jagersand, M.: Nonlinear dynamic image-based visual servoing of a quadrotor. J. Un. Veh. Syst. 3(1), 1–21 (2015)

    Article  Google Scholar 

  11. Garca Carrillo, L., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quad-rotor using vision. J. Int. Robot. Syst. 61, 103–118 (2011)

    Article  Google Scholar 

  12. Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot. 24, 331–340 (2008)

    Article  Google Scholar 

  13. Guenard, N., Hamel, T., Moreau, V.: Dynamic modeling and intuitive control strategy for an ”x4-flyer”. In: International Conference on Control and Automation, ICCA ’05, pp. 141–146 (2005)

  14. Hamel, T., Mahony, R.: Visual servoing of an under-actuated dynamic rigid-body system: an image-based approach. IEEE Trans. Robot. Autom. 18, 187–198 (2002)

    Article  Google Scholar 

  15. Hamel, T., Mahony, R.: Image based visual servo control for a class of aerial robotic systems. Automatica 43, 1975–1983 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Islam, S., Liu, P.X., El Saddik, A.: Nonlinear adaptive control for quadrotor flying vehicle. Nonlinear Dyn. 78(1), 117–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jabbari Asl, H., Yoon, J.: Vision-based control of a flying robot without linear velocity measurements. In: 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1670–1675 (2015)

  18. Jabbari, H., Oriolo, G., Bolandi, H.: Dynamic IBVS Control of an Underactuated UAV. In: IEEE International Conference on Robotics and Biomimetics, pp. 1158–1163 (2012)

  19. Jabbari Asl, H., Oriolo, G., Bolandi, H.: An adaptive scheme for image-based visual servoing of an underactuated UAV. Int. J. Robot. Autom. 29, 92–104 (2014)

    Google Scholar 

  20. Jabbari Asl, H., Oriolo, G., Bolandi, H.: Output feedback image-based visual servoing control of an underactuated unmanned aerial vehicle. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 228, 435–448 (2014)

    Article  Google Scholar 

  21. Le Bras, F., Hamel, T., Mahony, R., Treil, A.: Output feedback observation and control for visual servoing of VTOL UAVs. Int. J. Robot. Nonlinear Control 21, 1008–1030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mahony, R., Corke, P., Hamel, T.: Dynamic image-based visual servo control using centroid and optic flow features. J. Dyn. Syst. Meas. Control Trans. ASME 130, 011005 (2008)

    Article  Google Scholar 

  23. Mahony, R., Hamel, T.: Image-based visual servo control of aerial robotic systems using linear image features. IEEE Trans. Robot. 21(2), 227–239 (2005)

    Article  Google Scholar 

  24. Mebarki, R., Siciliano, B.: Velocity-free image-based control of unmanned aerial vehicles. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1522–1527 (2013)

  25. Mondragn, I.F., Campoy, P., Martinez, C., Olivares, M.: Omnidirectional vision applied to unmanned aerial vehicles (UAVs) attitude and heading estimation. Robot. Autonom. Syst. 58, 809–819 (2010)

    Article  Google Scholar 

  26. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al.: Fastslam: A factored solution to the simultaneous localization and mapping problem, In: American Association for Articial Intelligence, pp. 593–598 (2002)

  27. Ozawa, R., Chaumette, F.: Dynamic visual servoing with image moments for an unmanned aerial vehicle using a virtual spring approach. Adv. Robot. 27(9), 683–696 (2013)

    Article  Google Scholar 

  28. Plinval, H., Morin, P., Mouyon, P., Hamel, T.: Visual servoing for underactuated VTOL UAVs: a linear, homography-based framework. Int. J. Robot. Nonlinear Control 24, 1–28 (2013)

    MATH  Google Scholar 

  29. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, New York (2009)

    Book  Google Scholar 

  30. Slotine, J.-J.E., Li, W.: Applied nonlinear control. Prantice-Hall, Englewood Cliffs, New Jersey (1991)

    MATH  Google Scholar 

  31. Srinivasan, M., Zhang, S.: Visual motor computations in insects. Annu. Rev. Neurosci. 27, 679–696 (2004)

    Article  Google Scholar 

  32. Tahri, O., Chaumette, F.: Point-based and region-based image moments for visual servoing of planar objects. IEEE Trans. Robot. 21, 1116–1127 (2005)

    Article  Google Scholar 

  33. Tayebi, A., McGilvray, S.: Attitude stabilization of a vtol quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14, 562–571 (2006)

    Article  Google Scholar 

  34. Watanabe, Y., Calise, A.J., Johnson, E.N.: Vision-based obstacle avoidance for UAVs. In: AIAA Guidance, Navigation and Control Conference and Exhibit, pp. 6829–11 (2007)

  35. Xian, B., Dawson, D.M., de Queiroz, M.S., Chen, J.: A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Trans. Autom. Control 49, 1206–1211 (2004)

    Article  MathSciNet  Google Scholar 

  36. Xie, H., Lynch, A.F., Jagersand, M.: Dynamic IBVS of a rotary wing uav using line features. Robotica 1–18 (2014)

  37. Xu, R., Zgner, M.I.T.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)

    Article  MathSciNet  Google Scholar 

  38. Yu, Y., Lu, G., Sun, C., Liu, H.: Robust backstepping decentralized tracking control for a 3-dof helicopter. Nonlinear Dyn. 82, 1–14 (2015)

    Article  MathSciNet  Google Scholar 

  39. Zhao, B., Xian, B., Zhang, Y., Zhang, X.: Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans. Ind. Electron. 62(5), 2891–2902 (2015)

  40. Zou, A.-M., Kumar, K.D., Hou, Z.-G.: Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks. IEEE Trans. Neural Netw. 21(9), 1457–1471 (2010)

    Article  Google Scholar 

  41. Zufferey, J., Floreano, D.: Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Trans. Robot. Autom. 22, 137–146 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea, Ministry of Science, ICT and Future Planning under Grant 2012-0009524 and 2014R1A2A1A11053989. Hamed Jabbari Asl and Jungwon Yoon have contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Jabbari Asl.

Appendix

Appendix

1.1 Appendix 1: The time derivative of \(\dot{\bar{\varvec{\psi }}}\)

From (2), the time derivative of \(\dot{\psi }\) can be written as

$$\begin{aligned} \dot{\psi }=\frac{s_{\phi }}{c_{\theta }}\varOmega _2+\frac{c_{\phi }}{c_{\theta }}\varOmega _3. \end{aligned}$$
(46)

Using (4), the time derivative of (46) can be written as

$$\begin{aligned} \ddot{\psi }=&\frac{\dot{\phi }c_{\phi }c_{\theta }+\dot{\theta }s_{\theta }s_{\phi }}{c^2_{\theta }}\varOmega _2+\frac{s_{\phi }\left( J_{zz}-J_{xx}\right) }{c_{\theta }J_{yy}}\varOmega _1\varOmega _3\\&+\frac{s_{\phi }}{c_{\theta }J_{yy}}U_3+\frac{\dot{\theta }s_{\theta }c_{\phi }-\dot{\phi }s_{\phi }c_{\theta }}{c^2_{\theta }}\varOmega _3\\&+\frac{c_{\phi }\left( J_{xx}-J_{yy}\right) }{c_{\theta }J_{zz}}\varOmega _1\varOmega _2+\frac{c_{\phi }}{c_{\theta }J_{zz}}U_4. \end{aligned}$$

Therefore, the time derivative of \(\dot{\bar{\varvec{\psi }}}\) can be obtained as

$$\begin{aligned} \ddot{\bar{\varvec{\psi }}}=\left[ 0\;0\;\ddot{\psi }\right] ^{\top }=\varvec{\varGamma }_1+\varvec{\varGamma }_2\varvec{\tau } \end{aligned}$$

where the vector \(\varvec{\varGamma }_1\) and the matrix \(\varvec{\varGamma }_2\) are defined as in the following:

$$\begin{aligned} \varvec{\varGamma }_1= & {} \left[ \begin{array}{ccc} 0 \\ 0 \\ \varGamma _{13} \end{array}\right] \\ \varvec{\varGamma }_2= & {} \left[ \begin{array}{lll} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0\\ 0 &{} \frac{s_{\phi }}{c_{\theta }} &{} \frac{c_{\phi }}{c_{\theta }} \end{array}\right] \end{aligned}$$

in which \(\dot{\phi }\) and \(\dot{\theta }\) are defined in (2) and

$$\begin{aligned} \varGamma _{13}=&\frac{\dot{\phi }c_{\phi }c_{\theta }+\dot{\theta }s_{\theta }s_{\phi }}{c^2_{\theta }}\varOmega _2+\frac{s_{\phi }\left( J_{zz}-J_{xx}\right) }{c_{\theta }J_{yy}}\varOmega _1\varOmega _3\\&+\frac{\dot{\theta }s_{\theta }c_{\phi }-\dot{\phi }s_{\phi }c_{\theta }}{c^2_{\theta }}\varOmega _3+\frac{c_{\phi }\left( J_{xx}-J_{yy}\right) }{c_{\theta }J_{zz}}\varOmega _1\varOmega _2. \end{aligned}$$

1.2 Appendix 2: Proof of Lemma 3

The following Lyapunov function is considered:

$$\begin{aligned} L_1=\frac{1}{2}{\mathbf {x}}_2^{\top }{\mathbf {x}}_2+l_1b\left( t\right) \sqrt{1+{\mathbf {x}}_1^{\top }{\mathbf {x}}_1}. \end{aligned}$$

Using (39) and Property 2, the time derivative of \(L_1\) will be

$$\begin{aligned} \dot{L}_1=&-l_2b\left( t\right) {\mathbf {x}}_2^{\top }{\mathbf {h}}\left( {\mathbf {x}}_2\right) +{\mathbf {x}}_2^{\top }\varvec{\epsilon }+l_1\dot{b}\left( t\right) \sqrt{1+{\mathbf {x}}_1^{\top }{\mathbf {x}}_1}. \end{aligned}$$
(47)

First it is shown that \(L_1\) and hence \({\mathbf {x}}_1\) and \({\mathbf {x}}_2\) do not have a finite escape time. Since \(\varvec{\epsilon }\) and \(\dot{b}\left( t\right) \) are bounded and converge to zero, one will have

$$\begin{aligned} \dot{L}_1\le a_1\left\| {\mathbf {x}}_2\right\| +a_2\left\| {\mathbf {x}}_1\right\| +a_3 \end{aligned}$$

where \(a_1\), \(a_2\) and \(a_3\) are positive constants. Since \(\left\| {\mathbf {x}}_2\right\| ^2\le 2L_1\) and \(\left\| {\mathbf {x}}_1\right\| \le \frac{1}{l_1b\left( t\right) } L_1\), then one has \(\dot{L}_1\le a_1\sqrt{2L_1}+\frac{a_2}{l_1b\left( t\right) } L_1+a_3\). Under the condition that \(L_1\ge 1\), one has \(\dot{L}_1\le \left( a_1\sqrt{2}+\frac{a_2}{l_1b\left( t\right) }+a_3\right) L_1\) which can be rewritten as \(\frac{{\text {d}}L_1}{L_1}\le \left( a_1\sqrt{2}+\frac{a_2}{l_1b\left( t\right) }+a_3\right) {\text {d}}t\). Since \(b\left( t\right) \) is positive and continuous, integrating this relation in a finite time implies that \(L_1\) and therefore \({\mathbf {x}}_1\) and \({\mathbf {x}}_2\) do not have a finite escape time. Now, if \(L_1<1\), one will have \(\dot{L}_1\le \left( a_1\sqrt{2}+\frac{a_2}{l_1b\left( t\right) }+a_3\right) \sqrt{L}_1\) and by applying the same analysis, it can be concluded that \(L_1\) and hence \({\mathbf {x}}_1\) and \({\mathbf {x}}_2\) do not have a finite escape time. Next it is shown that \({\mathbf {x}}_1\) and \({\mathbf {x}}_2\) are bounded and converge to zero. According to (47), under the condition that

$$\begin{aligned} l_2b\left( t\right) \frac{\left\| {\mathbf {x}}_2\right\| ^2}{\sqrt{1+{\mathbf {x}}_2^{\top }{\mathbf {x}}_2}}>\left\| {\mathbf {x}}_2\right\| \left\| \varvec{\epsilon }\right\| +l_1\left| \dot{b}\left( t\right) \right| \sqrt{1+{\mathbf {x}}_1^{\top }{\mathbf {x}}_1} \end{aligned}$$
(48)

one has \(\dot{L}_1< 0\). Since \(\varvec{\epsilon }\) and \(\dot{b}\left( t\right) \) are bounded and converge to zero, and \({\mathbf {x}}_1\) and \({\mathbf {x}}_2\) do not have a finite escape time, then there is a finite time \(t_1\) such that for \(t\ge t_1\) the condition (48) is satisfied, and hence \({\mathbf {x}}_1\) and \({\mathbf {x}}_2\) are bounded. It should be noted that these signals are also bounded in the interval \(\left[ 0, t_1\right) \) since they do not escape in a finite time. Therefore, it can be concluded that \(\dot{L}_1\) is negative for all \(t\ge t_1\) which means that out of the following set:

$$\begin{aligned} \varvec{\varPsi }=&\left\{ {\mathbf {x}}_2|\frac{\left\| {\mathbf {x}}_2\right\| ^2}{\sqrt{1+{\mathbf {x}}_2^{\top }{\mathbf {x}}_2}}\le \frac{1}{l_2b\left( t\right) }\left\| {\mathbf {x}}_2\right\| \left\| \varvec{\epsilon }\right\| \right. \\&\left. \qquad \;+\frac{l_1}{l_2b\left( t\right) }\left| \dot{b}\left( t\right) \right| \sqrt{1+{\mathbf {x}}_1^{\top }{\mathbf {x}}_1}\right\} \end{aligned}$$

\({\mathbf {x}}_2\) is bounded, and since this region converges to zero, then \({\mathbf {x}}_2\) will be driven to zero. Consequently, applying Lemma 2 to (39) shows that \(\dot{{\mathbf {x}}}_2\) converges to zero, which indicates that \({\mathbf {x}}_1\) also converges to zero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbari Asl, H., Yoon, J. Robust image-based control of the quadrotor unmanned aerial vehicle. Nonlinear Dyn 85, 2035–2048 (2016). https://doi.org/10.1007/s11071-016-2813-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2813-2

Keywords

Navigation