Skip to main content
Log in

Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear random vibration of the cables with small sag-to-span ratio and excited by in-plane transverse uniformly distributed Gaussian white noise is studied by a nonlinear multi-degree-of-freedom system which is formulated with Galerkin’s method. The stationary probabilistic solutions of the nonlinear system are analyzed with the state-space-split method in conjunction with the exponential polynomial closure method. Effectiveness of this approach about the cable random vibration is examined through comparison with Monte Carlo simulation and equivalent linearization method. The probabilistic solutions of the cable random vibrations are also studied by modeling the cable as single-degree-of-freedom system and multi-degree-of-freedom system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ibrahim, R.A.: Nonlinear vibrations of suspended cables—Part III: Random excitation and interaction with fluid flow. Appl. Mech. Rev. 57(6), 515–549 (2004)

    Article  Google Scholar 

  2. Chang, W.K., Ibrahim, R.A., Afaneh, A.A.: Planar and non-planar non-linear dynamics of suspended cables under random in-plane loading—I: Single internal resonance. Int. J. Non-Linear Mech. 31(6), 837–859 (1996)

    Article  MATH  Google Scholar 

  3. Chang, W.K., Ibrahim, R.A.: Multiple internal resonance in suspended cables under random in-plane loading. Nonlinear Dyn. 12, 275–303 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carassale, L., Piccardo, G.: Non-linear discrete models for the stochastic analysis of cables in turbulent wind. Int. J. Non-Linear Mech. 45, 219–231 (2010)

    Article  Google Scholar 

  5. Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)

    MATH  Google Scholar 

  6. Sobczyk, K.: Stochastic Differential Equations with Application to Physics and Engineering. Kluwer, Boston (1991)

    MATH  Google Scholar 

  7. Lin, Y.K., Cai, G.Q.: Probabilistic Structural Dynamics. McGraw-Hill, New York (1995)

    Google Scholar 

  8. Risken, H.: The Fokker–Planck Equation, Methods of Solution and Applications. Springer, Berlin (1989)

    MATH  Google Scholar 

  9. Gardiner, C.W.: Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer, Berlin (2009)

    MATH  Google Scholar 

  10. Masud, A., Bergman, L.A.: Solution of the four dimensional Fokker–Planck equation: still a challenge. In: Proceedings of ICOSSAR’2005, pp. 1911–1916. Millpress Science Publishers, Rotterdam (2005)

  11. Sun, Y., Kumar, M.: Numerical solution of high dimensional stationary Fokker–Planck equations via tensor decomposition and Chebyshev spectral differentiation. Comput. Math. Appl. 67, 1961–1977 (2014)

    MathSciNet  Google Scholar 

  12. Booton, R.C.: Nonlinear control systems with random inputs. IRE Trans. Circuit Theory CT 1(1), 9–18 (1954)

    Article  Google Scholar 

  13. Caughey, T.K.: Response of a nonlinear string to random loading. ASME J. Appl. Mech. 26, 341–344 (1959)

    MathSciNet  MATH  Google Scholar 

  14. Spanos, P.D.: Stochastic linearization in structural dynamics. ASME J. Appl. Mech. Rev. 34, 1–8 (1981)

    MathSciNet  Google Scholar 

  15. Socha, L., Soong, T.T.: Linearization in analysis of nonlinear stochastic systems. ASME J. Appl. Mech. Rev. 44, 399–422 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Proppe, C., Pradlwater, H.J., Schuëller, G.I.: Equivalent linearization and Monte Carlo simulation in stochastic dynamics. Probab. Eng. Mech. 18, 1–15 (2003)

    Article  Google Scholar 

  17. Metropolis, N., Ulam, S.: Monte Carlo method. J. Am. Stat. Assoc. 14, 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rao, N.J., Borwanker, J.D., Ramkrishna, D.: Numerical solution of It\(\hat{o}\) integral equations. SIAM J. Control 12(1), 124–139 (1974)

    Article  MathSciNet  Google Scholar 

  19. Harris, C.J.: Simulation of multivariable nonlinear stochastic systems. Int. J. Numer. Methods Eng. 14, 37–50 (1979)

    Article  MATH  Google Scholar 

  20. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  21. Honeycutt, R.L.: Stochstic Runge–Kutta algorithms I. White noises. Phys. Rev. A 45(2), 600–603 (1992)

    Article  Google Scholar 

  22. Velasco, J.L., Bustos, A., Castejon, F., Fernandez, L.A., Martin-Mayor, V., Tarancon, A.: ISDEP: Integrator of stochastic differential equations for plasmas. Comput. Phys. Commun. 183, 1877–1883 (2012)

    Article  MATH  Google Scholar 

  23. Wu, W.F., Lin, Y.K.: Cumulant-neglect closure for nonlinear oscillators under random parametric and external excitations. Int. J. Non-Linear Mech. 19, 349–362 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ibrahim, R.A., Soundararajan, A., Heo, H.: Stochastic response of nonlinear dynamic systems based on a non-Gaussian closure. ASME J. Appl. Mech. 52, 965–970 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, J.-Q., Hsu, C.S.: Cumulant-neglect closure method for nonlinear systems under random excitations. ASME J. Appl. Mech. 54, 649–655 (1987)

    Article  MATH  Google Scholar 

  26. Hasofer, A.M., Grigoriu, M.: A new perspective on the moment closure method. ASME J. Appl. Mech. 62, 527–532 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wiener, N.: The average of an analytic functional. Proc. Natl. Acad. Sci. 7(9), 253–260 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  MathSciNet  Google Scholar 

  29. Stratonovich, R.L.: Topics in the Theory of Random Noise. Gordon and Breach, New York (1963)

    MATH  Google Scholar 

  30. Crandall, S.H.: Perturbation techniques for random vibration of nonlinear systems. J. Acoust. Soc. Am. 35, 1700–1705 (1963)

    Article  MathSciNet  Google Scholar 

  31. Assaf, S.A., Zirkle, L.D.: Approximate analysis of non-linear stochastic systems. Int. J. Control 23, 477–492 (1976)

    Article  MATH  Google Scholar 

  32. Muscolino, G., Ricciardi, G., Vasta, M.: Stationary and non-stationary probability density function for non-linear oscillators. Int. J. Non-Linear Mech. 32(6), 1051–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Whitney, J.C.: Finite difference methods for the Fokker–Planck equation. J. Comput. Phys. 6, 483–509 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  34. Langley, R.S.: A finite element method for the statistics of nonlinear random vibration. J. Sound Vib. 101, 41–54 (1985)

    Article  MATH  Google Scholar 

  35. Er, G.K.: An improved closure method for analysis of nonlinear stochastic systems. Nonlinear Dyn. 17(3), 285–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Er, G.K.: The probabilistic solutions to non-linear random vibrations of multi-degree-of-freedom systems. ASME J. Appl. Mech. 67(2), 355–359 (2000)

    Article  MATH  Google Scholar 

  37. Kumar, P., Narayanan, S.: Solution of Fokker–Planck equation by finite element and finite difference methods for nonlinear systems. Sadhana 31(4), 445–461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. von Wagner, U., Wedig, W.V.: On the calculation of stationary solutions of multi-dimensional Fokker–Planck equations by orthogonal functions. Nonlinear Dyn. 21, 289–306 (2000)

    Article  MATH  Google Scholar 

  39. Martens, W., von Wagner, U., Mehrmann, V.: Calculation of high-dimensional probability density functions of stochastically excited nonlinear mechanical systems. Nonlinear Dyn. 67, 2089–2099 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Er, G.K.: Methodology for the solutions of some reduced Fokker–Planck equations in high dimensions. Ann. Phys. (Berlin) 523(3), 247–258 (2011)

  41. Er, G.K., Iu, V.P.: A new method for the probabilistic solutions of large-scale nonlinear stochastic dynamic systems. In: Zhu, W.Q., Lin, Y.K., Cai, G.Q. (eds.) IUTAM Book Series Nonlinear Stochastic Dynamics and Control, pp. 25–34. Springer, Berlin (2011)

  42. Er, G.K., Iu, V.P.: State-space-split method for some generalized Fokker–Planck–Kolmogorov equations in high dimensions. Phys. Rev. E 85, 067701 (2012)

    Article  Google Scholar 

  43. Er, G.K.: Probabilistic solutions of some multi-degree-of-freedom nonlinear stochastic dynamical systems excited by filtered Gaussian white noise. Comput. Phys. Commun. 185, 1217–1222 (2014)

    Article  MathSciNet  Google Scholar 

  44. Irvine, H.M.: Cable Structure. MIT Press, Cambridge (1981)

    Google Scholar 

  45. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The results presented in this paper were obtained under the supports of the Research Committee of University of Macau (Grant No. MYRG2014-00084-FST) and the Science and Technology Development Fund of Macau (Grant No. 043/2013/A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Er.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, G.K., Iu, V.P., Wang, K. et al. Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise. Nonlinear Dyn 85, 1887–1899 (2016). https://doi.org/10.1007/s11071-016-2802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2802-5

Keywords

Navigation