Skip to main content
Log in

Chaotic hash function based on the dynamic S-Box with variable parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a chaotic hash function based on the dynamic S-Box with variable parameters in this paper. More specifically, we first exploit the piecewise linear chaotic map to obtain four initial buffers and an initial hash value. Then, we divide a randomly chosen message into message blocks and assign the four buffers and current message block to a transfer function to produce variable parameters and initial values of the PWLCM and logistic map for constructing a dynamic S-Box, which is then used for updating the four buffers. After all the message blocks are processed, the final hash value is generated by cascading the buffers and then applying XOR operation with the last hash value. Finally, we conduct performance evaluation on the proposed hash algorithm in terms of sensitivity, confusion and diffusion properties, collision resistances, speed analysis, randomness tests, and comparison with other algorithms, and the results demonstrate that the proposed algorithm has good statistical properties, strong collision resistances and better performance compared with other schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sklavos, N., Alexopoulos, E., Koufopavlou, O.: Networking data integrity: high speed architectures and hardware implementations. Int. Arab. J. Inf. Technol. 1, 54–59 (2003)

    Google Scholar 

  2. Tsudik, G.: Message authentication with one-way hash functions. ACM SIGCOMM Comput. Commun. Rev. 22, 29–38 (1992)

    Article  Google Scholar 

  3. Rompel J.: One-way functions are necessary and sufficient for secure signatures. In: Proceedings of the 22th Annual ACM Symposium on Theory of Computing, pp. 387–394 (1990)

  4. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199 (2004)

  5. Wang, X., Yin, Y., Yu, H.: Finding collisions in the full SHA-1. In: Advances in Cryptology-CRYPTO 2005, Lecture Notes in Computer Science, vol. 3621, pp. 17–36 (2005)

  6. Liang, J., Lai, X.: Improved collision attack on hash function MD5. In: Technical Report (2005)

  7. Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: Improved collision attacks on MD4 and MD5. IEICE Trans. 90–A(1), 36–47 (2007)

    Article  Google Scholar 

  8. Mendel, F., Nad, T., Schlaffer, M.: Improving local collisions: New attacks on reduced SHA-256. In: Advances in Cryptology-EUROCRYPT 2013, Lecture Notes in Computer Science, vol. 7881, pp. 262–278 (2013)

  9. Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision analysis. In: Advances in Cryptology-EUROCRYPT 2013, Lecture Notes in Computer Science, vol. 7881, pp. 245–261 (2013)

  10. Wong, K.W.: A combined chaotic cryptographic and hashing scheme. Phys. Lett. A 307, 292–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, S., Li, Y., Xiao, D.: Analysis and improvement of a chaos-based Hash function construction. Commun. Nonlinear Sci. Numer. Simul. 15, 1338–1347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Xiao, D., Deng, S.: Secure hash function based on chaotic tent map with changeable parameter. High Technol. Lett. 18(1), 7–12 (2012)

    MathSciNet  Google Scholar 

  13. Liu, J., Wang, X., Yang, K., Zhao, C.: A fast new cryptographic hash function based on integer tent mapping system. J. Comput. 7(7), 1671–1680 (2012)

    Google Scholar 

  14. Wang, Y., Yang, D., Du, M., Yang, H.: One-way hash function construction based on iterating a chaotic map. In: Proceedings-CIS Workshops 2007, 2007 International Conference on Computational Intelligence and Security Workshops, pp. 791–794 (2007)

  15. Maqableh, M., Samsudin, A.B., Alia, M.A.: New hash function based on chaos theory (CHA-1). Int. J. Comput. Sci. Netw. Secur. 8(2), 20–26 (2008)

    Google Scholar 

  16. Jiteurtragool, N., Ketthong, P., Wannaboon, C., San-Um, W.: A topologically simple keyed hash function based on circular chaotic sinusoidal map network. In: International Conference on Advanced Communication Technology, ICACT, pp. 1089–1094 (2013)

  17. Zhang, Q., Zhang, H., Li, Z.: One-way hash function construction based on conservative chaotic systems. In: 5th International Conference on Information Assurance and Security, IAS 2009, vol. 2, pp. 402–405 (2009)

  18. Akhavan, A., Samsudin, A., Akhshani, A.: Hash function based on piecewise nonlinear chaotic map. Chaos Solitons Fractals 42, 1046–1053 (2009)

    Article  MATH  Google Scholar 

  19. Li, Y., Xiao, D., Deng, S., Han, Q., Zhou, G.: Parallel hash function construction based on chaotic maps with changeable parameters. Neural Comput. Appl. 20(8), 1305–1312 (2011)

    Article  Google Scholar 

  20. Xiao, D., Liao, X., Deng, S.: Parallel keyed hash function construction based on chaotic maps. Phys. Lett. A 372, 4682–4688 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xiao, D., Liao, X., Wang, Y.: Improving the security of a parallel keyed hash function based on chaotic maps. Phys. Lett. A 373, 4346–4353 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kanso, A., Ghebleh, M.: A fast and efficient chaos-based keyed hash function. Commun. Nonlinear Sci. Numer. Simul. 18, 109–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nouri, M., Khezeli, A., Ramezani, A., Ebrahimi, A.: A dynamic chaotic hash function based upon circle chord methods. In: 2012 6th International Symposium on Telecommunications, IST 2012, pp. 1044–1049 (2012)

  24. Akhavan, A., Samsudin, A., Akshani, A.: A novel parallel hash function based on 3D chaotic map. EURASIP J. Adv. Signal Process. 2013(1), 1–12 (2013)

    Article  Google Scholar 

  25. Deng, S., Li, Y., Xiao, D.: Analysis and improvement of a chaos-based hash function construction. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1338–1347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of dynamic look-up table based chaotic cryptosystems. Phys. Lett. A 326(3), 211–218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Arumugam, G., Lakshmi Praba, V., Radhakrishnan, S.: Study of chaos functions for their suitability in generating message authentication codes. Appl. Soft Comput. 7(3), 1064–1071 (2007)

    Article  Google Scholar 

  28. Li, C., Wang, S.: A new one-time signature scheme based on improved chaos hash function. Comput. Eng. Appl. 43(35), 133–136 (2007)

    Google Scholar 

  29. Guo, W., Wang, X., He, D., Cao, Y.: Cryptanalysis on a parallel keyed hash function based on chaotic maps. Phys. Lett. A 373(36), 3201–3206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, D., Peng, W., Liao, X., Xiang, T.: Collision analysis of one kind of chaos-based hash function. Phys. Lett. A 374(10), 1228–1231 (2010)

    Article  MATH  Google Scholar 

  31. Wang, S., Shan, P.: Security analysis of a one-way hash function based on spatiotemporal chaos. Chin. Phys. B 20(9), 090504–090507 (2011)

    Article  Google Scholar 

  32. Wang, S., Li, D., Zhou, H.: Collision analysis of a chaos-based hash function with both modification detection and localization capability. Commun. Nonlinear Sci. Numer. Simul. 17(2), 780–784 (2012)

    Article  MathSciNet  Google Scholar 

  33. Bakhtiari, S., Safavi-Naini, R., Pieprzyk, J.: Keyed hash function. In: Proceedings of the Cryptography: Policy and Algorithms, Lecture Notes in Computer Science, vol. 1029, pp. 201–214 (1996)

  34. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zemor, G.: Hash functions and Cayley graphs. Des. Codes Crypt. 4(3), 381–394 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stinson, D.R.: Some observations on the theory of cryptographic hash functions. Des. Codes Cryptogr. 38(2), 259–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Andreeva, E., Mennink, B., Preneel, B.: Open problems in hash function security. Des. Codes Cryptogr. (2015). doi:10.1007/s10623-015-0096-0

    MathSciNet  MATH  Google Scholar 

  38. Rivest, R.: The MD5 message-digest algorithm. IETF Network Working Group, RFC 1321 (1992)

  39. NIST, “Secure Hash Standard”. http://csrc.nist.gov/CryptoToolkit/tkhash.html (2001)

  40. Wang, Y., Liao, X., Xiao, D., Wong, K.: One-way hash function construction based on 2D coupled map lattices. Inf. Sci. 178(5), 1391–1406 (2008)

    Article  MATH  Google Scholar 

  41. Li, Y., Xiao, D., Deng, S.: Keyed hash function based on a dynamic lookup table of functions. Inf. Sci. 214, 56–75 (2012)

    Article  Google Scholar 

  42. Zhang, H., Wang, X., Li, Z., Liu, D.: One way hash function construction based on spatiotemporal chaos. Acta Phys. Sin. 54, 4006–4011 (2005)

    Google Scholar 

  43. Yi, X.: Hash function based on chaotic tent maps. IEEE Trans. Circuits Syst.-II 52, 354–357 (2005)

    Article  Google Scholar 

  44. Guo, X.F., Zhang, J.S.: Keyed one-way hash function construction based on the chaotic dynamic S-Box. Acta Phys. Sin. 55, 4442–4449 (2006)

    Google Scholar 

  45. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., et al.: A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications, Version STS-2.1, NIST Special Publication 800–22rev1a (2010). http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf

  46. Marsaglia, G.: The Marsaglia random number CDROM including the DIEHARD battery of tests of randomness (1996). http://stat.fsu.edu/pub/diehard

  47. Walker, J.: ENT—A pseudorandom number sequence test program (1993). http://www.fourmilab.ch/random/

  48. Xiao, D., Liao, X., Wang, Y.: Parallel keyed hash function construction based on chaotic neural network. Neurocomputing 72, 2288–2296 (2009)

    Article  Google Scholar 

  49. Kanso, A., Ghebleh, M.: A structure-based chaotic hashing scheme. Nonlinear Dyn. 81, 27–40 (2015)

    Article  MathSciNet  Google Scholar 

  50. Teh, J.S., Samsudin, A., Akhavan, A.: Parallel chaotic hash function based on the shuffle-exchange network. Nonlinear Dyn. 81, 1067–1079 (2015)

    Article  MathSciNet  Google Scholar 

  51. Li, Y., Deng, S., Xiao, D.: A novel Hash algorithm construction based on chaotic neural network. Neural Comput. Appl. 20, 133–141 (2011)

    Article  Google Scholar 

  52. Ren, H., Wang, Y., Xie, Q., Yang, H.: A novel method for one-way hash function construction based on spatiotemporal chaos. Chaos Solitons Fractals 42(4), 2014–2022 (2009)

    Article  Google Scholar 

  53. Xiao, D., Shih, F.Y., Liao, X.F.: A chaos-based hash function with both modification detection and localization capabilities. Commun. Nonlinear Sci. Numer. Simul. 15, 2254–2261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, J., Wang, X., Zhang, W.: Chaotic keyed hash function based on feedforward–feedback nonlinear digital filter. Phys. Lett. A 362, 439–448 (2007)

    Article  MATH  Google Scholar 

  55. Wang, Y., Wong, K.W., Xiao, D.: Parallel hash function construction based on coupled map lattices. Commun. Nonlinear Sci. Number. Simulat. 16, 2810–2821 (2011)

  56. Luo, Y., Du, M.: One-way hash function construction based on the spatiotemporal chaotic system. Chin. Phys. B 21(6), 060503 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Our sincere thanks go to the anonymous reviewers for their valuable comments. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61402380 and 61528206), the Natural Science Foundation of CQ CSTC (Grant No. cstc2015jcyjA40044), the Fundamental Research Funds for the Central Universities (Grant No. XDJK2015B030), the Science and Technology Foundation of Guizhou (Grant No. LH20147386) and the Scientific Project of State Ethnic Affairs Commission of the People’s Republic of China (Grant No. 14GZZ012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yantao Li.

Appendix

Appendix

Lemma

Let \(\xi _1 \in (0,1), \xi _2 \in (0,1)\) be independent and uniformly distributed random variables, and another random variable \(\eta =|\xi _2 -\xi _1 |\), then expected value \(E(\eta )=1/3\).

Proof

$$\begin{aligned} E(\eta )= & {} \int _0^1 \int _0^1 |x-y|\mathrm{d}x\mathrm{d}y=\int _0^1 \mathrm{d}x\int _0^x (x-y)\mathrm{d}y\nonumber \\&+\int _0^1 {\mathrm{d}x\int _x^1 {(y-x)\mathrm{d}y} } \\= & {} \int _0^1 0.5x^{2}\mathrm{d}x+\int _0^1 (0.5-x+0.5x^{2})\mathrm{d}x\\= & {} 1/3 . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ge, G. & Xia, D. Chaotic hash function based on the dynamic S-Box with variable parameters. Nonlinear Dyn 84, 2387–2402 (2016). https://doi.org/10.1007/s11071-016-2652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2652-1

Keywords

Navigation