Skip to main content
Log in

Linear and nonlinear stability analysis of a car-following model considering velocity difference of two adjacent lanes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An improved optimal velocity model, which considers the velocity difference of two adjacent lanes, is presented in this paper. Using linear stability theory, the stability criterion of the new model is obtained and the neutral stability curves are plotted. By applying the reductive perturbation method, the nonlinear stability of the proposed model is also investigated and the soliton solution of the modified Korteweg–de Vries equation near the critical point is obtained to characterize the unstable region. All the theoretical analysis and numerical results demonstrate that the proposed model can characterize traffic following behaviors effectively and achieve better stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1045 (1995)

  2. Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F Traffic Psychol. Behav. 2(4), 181–196 (1999)

    Article  Google Scholar 

  3. Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Oper. Res. 6(2), 165–184 (1958)

  4. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4), 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  5. Cuesta, J.A., Martínez, F.C., Molera, J.M., Sánchez, A.: Phase transitions in two-dimensional traffic-flow models. Phys. Rev. E 48(6), 4175–4179 (1993)

  6. Cui, Y., Cheng, R.J., Ge, H.X.: The velocity difference control signal for two-lane car-following model. Nonlinear Dyn. 78(1), 585–596 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edie, L.C.: Car-following and steady-state theory for noncongested traffic. Oper. Res. 9(1), 66–76 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gazis, D.C., Herman, R., Potts, R.B.: Car-following theory of steady-state traffic flow. Oper. Res. 7(4), 499–505 (1959)

  9. Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9(4), 545–567 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ge, H.X.: Modified coupled map car-following model and its delayed feedback control scheme. Chin. Phys. B 20(9), 1–8 (2011)

    Article  Google Scholar 

  11. Ge, H.X., Cheng, R.J., Dai, S.Q.: Kdv and kink–antikink solitons in car-following models. Phys. A Stat. Mech. Appl. 357(3), 466–476 (2005)

    Article  MathSciNet  Google Scholar 

  12. Ge, H.X., Dai, S.Q., Dong, L.Y., Xue, Y.: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. Phys. Rev. E 70(6), 1–6 (2004)

    Article  MathSciNet  Google Scholar 

  13. Ge, H.X., Meng, X.P., Ma, J., Lo, S.M.: An improved car-following model considering influence of other factors on traffic jam. Phys. Lett. A 377(1), 9–12 (2012)

    Article  Google Scholar 

  14. Gordon, W.J., Newell, G.F.: Closed queuing systems with exponential servers. Oper. Res. 15(2), 254–265 (1967)

    Article  MATH  Google Scholar 

  15. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58(1), 133 (1998)

    Article  Google Scholar 

  16. Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Oper. Res. 7(1), 86–106 (1959)

    Article  MathSciNet  Google Scholar 

  17. Jia, Y., Du, Y., Wu, J.: Stability analysis of a car-following model on two lanes. Math. Problems Eng. 2014, 1–9 (2014)

  18. Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64(1), 1–4 (2001)

    Article  Google Scholar 

  19. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. Part B Methodol. 36(5), 405–419 (2002)

    Article  Google Scholar 

  20. Komatsu, T.S., Sasa, S.: Kink soliton characterizing traffic congestion. Phys. Rev. E 52(5), 5574–5603 (1995)

  21. Konishi, K., Kokame, H., Hirata, K.: Coupled map car-following model and its delayed-feedback control. Phys. Rev. E 60(4), 4000–4007 (1999)

    Article  Google Scholar 

  22. Lenz, H., Wagner, C., Sollacher, R.: Multi-anticipative car-following model. Eur. Phys. J. B-Condens. Matter Complex Syst. 7(2), 331–335 (1999)

    Article  Google Scholar 

  23. Liu, F., Cheng, R., Zheng, P., Ge, H.: TDGL and mKdV equations for car-following model considering traffic jerk. Nonlinear Dyn. 83(1), 793–800 (2016)

  24. Muramatsu, M., Nagatani, T.: Soliton and kink jams in traffic flow with open boundaries. Phys. Rev. E 60(1), 180–187 (1999)

  25. Nagatani, T.: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys. Rev. E 60(6), 6395–6401 (1999)

  26. Nagatani, T.: Density waves in traffic flow. Phys. Rev. E 61(4), 3564–3570 (2000)

  27. Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys. 65(9), 1331–1386 (2002)

  28. Nagatani, T., Nakanishi, K., Emmerich, H.: Phase transition in a difference equation model of traffic flow. J. Phys. A Math. Gen. 31(24), 5431–5438 (1998)

  29. Nagel, K., Herrmann, H.J.: Deterministic models for traffic jams. Phys. A Stat. Mech. Appl. 199(2), 254–269 (1993)

    Article  MATH  Google Scholar 

  30. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Rhys. I 2(12), 2221–2229 (1992)

    Google Scholar 

  31. Newell, G.F.: A theory of platoon formation in tunnel traffic. Oper. Res. 7(5), 589–598 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  32. Newell, G.F.: Nonlinear effects in the dynamics of car following. Oper. Res. 9(2), 209–229 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F., Tuo, M.X.: Optimal velocity difference model for a car-following theory. Phys. Lett. A 375(45), 3973–3977 (2011)

  34. Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24(3), 274–281 (1953)

  35. Sawada, S.: Generalized optimal velocity model for traffic flow. Int. J. Modern Phys. C 13(1), 1–12 (2002)

    Article  MATH  Google Scholar 

  36. Tang, T., Shi, W., Shang, H., Wang, Y.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn 76(4), 2017–2023 (2014)

    Article  Google Scholar 

  37. Tang, T.Q., Huang, H.J., Gao, Z.Y.: Stability of the car-following model on two lanes. Phys. Rev. E 72(6), 066124 (2005)

    Article  Google Scholar 

  38. Tatsumi, T., Kida, S.: Statistical mechanics of the burgers model of turbulence. J. Fluid Mech. 55(4), 659–675 (1972)

    Article  MATH  Google Scholar 

  39. Whitham, G.: Exact solutions for a discrete system arising in traffic flow. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 428, pp. 49–69. The Royal Society (1990)

  40. Yu, S.W., Liu, Q.L., Li, X.H.: Full velocity difference and acceleration model for a car-following theory. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1229–1234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yu, X.: Analysis of the stability and density waves for traffic flow. Chin. Phys. 11(11), 1128–1134 (2002)

  42. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70(2), 1205–1211 (2012)

    Article  MathSciNet  Google Scholar 

  43. Zhou, J.: An extended visual angle model for car-following theory. Nonlinear Dyn. 81(1), 549–560 (2015)

Download references

Acknowledgments

This research was funded partially by the National Science Foundation of China under Grant #61371076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinkai Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Wang, P., Wu, X. et al. Linear and nonlinear stability analysis of a car-following model considering velocity difference of two adjacent lanes. Nonlinear Dyn 84, 387–397 (2016). https://doi.org/10.1007/s11071-015-2568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2568-1

Keywords

Navigation