Skip to main content
Log in

A backstepping-based procedure with saturation functions to control the PVTOL system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, we present a control strategy to solve the regulation problem for a simplified version of a PVTOL system strongly coupled. The strategy is split into two control actions that act simultaneously: one stabilizes asymptotically the vertical position; the other stabilizes both the horizontal and the angle positions. The first controller uses a simple feedback linearization procedure in conjunction with a saturation function. This controller assigns a quasilinear behavior to the vertical displacement. The second controller is based on a suitable backstepping procedure, and its task is to force the remaining variables converge asymptotically to the origin. In short, the resulting control is a nonlinear state feedback, whose performance is demonstrated by numerical simulations. The convergence analysis, based on the Lyapunov method, turned out to be quite simple if compared to other control methods found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Constant \(\overline{\theta }\) can be fixed as \(0.99\pi /2\).

  2. Let \(f(x):R\rightarrow R\) be a continuous and smooth function in \( D\subset R\). If \(f^{\prime }(x)\ge 0\), for all \(x\in D\), then for any x,\( y\in D\) the following inequality holds:

    $$\begin{aligned} x\left( f(x)-f(x+y)\right) \le 0. \end{aligned}$$
  3. Remember that:

    $$\begin{aligned} s_{m}^{\prime }\left[ x\right] =\left\{ \begin{array}{l} 1\text { if }\left| \text {x}\right| \le 1 \\ 0\text { otherwise} \end{array} \right. \end{aligned}$$

    and \(\ s_{m}^{\prime \prime }\left[ x\right] =0\); for all \(x\in R\).

  4. Also, the set \(\varOmega \) not contains the singular points \(q_{3}=\pm \overline{\theta }\).

References

  1. Acosta, J.A., Ortega, R., Astolfi, A., Mahindrakar, A.D.: Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Autom. Control 50(12), 1936–1955 (2005)

    Article  MathSciNet  Google Scholar 

  2. Benosman, M., Liao, F., Lum, K.-Y.: Output trajectory tracking for the PVTOL aircraft through control allocation. In: IEEE International Conference on Control Applications, 2007. CCA 2007, pp. 880–885. IEEE (2007)

  3. Brandao, A.S., Gandolfo, D., Sarcinelli-Filho, M., Carelli, R.: Pvtol maneuvers guided by a high-level nonlinear controller applied to a rotorcraft machine. Eur. J. Control 20(4), 172–179 (2014)

    Article  MATH  Google Scholar 

  4. Cardenas, R., Aguilar, L.T.: Output feedback sliding mode control of a pvtol including actuators dynamics. In: IEEE International Conference on Control Applications (CCA), 2011, pp. 1482–1486. IEEE (2011)

  5. Carrillo, L.R.G., López, A.E.D., Lozano, R., Pégard, C.: Quad Rotorcraft Control: Vision-Based Hovering and Navigation. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  6. Frye, M.T., Ding, S., Qian, C., Li, S.: Global finite-time stabilization of a pvtol aircraft by output feedback. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, pp. 2831–2836. IEEE (2009)

  7. Garcia, P.C., Lozano, R., Dzul, A.E.: Modelling and Control of Mini-Flying Machines. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  8. Gruszka, A., Malisoff, M., Mazenc, F.: On tracking for the pvtol model with bounded feedbacks. In: American Control Conference (ACC), 2011, pp. 1428–1433. IEEE (2011)

  9. Hauser, J., Sastry, S., Meyer, G.: Nonlinear control design for slightly non-minimum phase systems: application to V/STOL aircraft. Automatica 28(4), 665–679 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Huang, C.-S., Yuan, K.: Output tracking of a non-linear non-minimum phase pvtol aircraft based on non-linear state feedback control. Int. J. Control 75(6), 466–473 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Prentice hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  12. Lai, N.O., Edwards, C., Spurgeon, S.K.: On output tracking using dynamic output feedback discrete-time sliding-mode controllers. IEEE Trans. Autom. Control 52(10), 1975–1981 (2007)

    Article  MathSciNet  Google Scholar 

  13. Lara, D., Panduro, M., Romero, G., Alcorta, E., Betancourt, R.: Robust control design techniques using differential evolution algorithms applied to the pvtol. Intell. Autom. Soft Comput. 20(3), 451–466 (2014)

    Article  Google Scholar 

  14. Léchappé, V., Aoustin, Y., Martinez, L.A..M., Moog, C.H.: Partial linearization of the pvtol aircraft with internal stability. In: CDC, pp. 2564–2569 (2013)

  15. Lin, F., Zhang, W., Brandt, R.D.: Robust hovering control of a pvtol aircraft. Trans. Control Syst. Technol. 7(3), 343–351 (1999)

    Article  Google Scholar 

  16. Lozano, R., Castillo, P., Dzul, A.: Global stabilization of the pvtol: real-time application to a mini-aircraft. Int. J. Control 77(8), 735–740 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maqsood, A., Go, T.H.: Multiple time scale analysis of aircraft longitudinal dynamics with aerodynamic vectoring. Nonlinear Dyn. 69(3), 731–742 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martin, P., Devasia, S., Paden, B.: A different look at output tracking: control of a vtol aircraft. In: Proceedings of the 33rd IEEE Conference on Decision and Control, 1994, vol. 3, pp. 2376–2381. IEEE (1994)

  19. Nielsen, C., Consolini, L., Maggiore, M., Tosques, M.: Path following for the pvtol: A set stabilization approach. In: Proceedings of the 47th IEEE Conference on Decision and Control, 2008. CDC 2008, pp. 584–589. IEEE (2008)

  20. Notarstefano, G., Hauser, J., Frezza, R.: Trajectory manifold exploration for the pvtol aircraft. In: Proceedings of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05, pp. 5848–5853. IEEE (2005)

  21. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. PhD thesis, Massachusetts Institute of Technology (2000)

  22. Olfati-Saber, R.: Global configuration stabilization for the vtol aircraft with strong input coupling. IEEE Trans. Autom. Control 47(11), 1949–1952 (2002)

    Article  MathSciNet  Google Scholar 

  23. Palomino, A., Castilto, P., Fantoni, I., Lozano, R., Pégard, C.: Control strategy using vision for the stabilization of an experimental pvtol aircraft setup. IEEE Trans. Control Syst. Technol. 13(5), 847–850 (2005)

    Article  Google Scholar 

  24. Qiu, H., Duan, H.: Receding horizon control for multiple UAV formation flight based on modified brain storm optimization. Nonlinear Dyn. 78(3), 1973–1988 (2014)

  25. Rubio, J de J, Perez Cruz, J.H., Zamudio, Z., Salinas, A.J.: Comparison of two quadrotor dynamic models. IEEE Latin Am. Trans. 12(4), 531–537 (2014)

    Article  Google Scholar 

  26. Saberi, A., Kokotovic, P.V., Sussmann, H.J. : Global stabilization of partially linear composite systems. In: Proceedings of the 28th IEEE Conference on Decision and Control, 1989, pp. 1385–1391. IEEE (1989)

  27. Sira-Ramirez H., Fliess, M.: Regulation of non-minimum phase outputs in a pvtol aircraft. In: Proceedings of the 37th IEEE Conference on Decision and Control, 1998, vol. 4, pp. 4222–4227. IEEE (1998)

  28. Sira-Ramirez, H., Agrawal, S.K.: Differentially Flat Systems, vol. 17. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  29. Teel, A.R.: A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Autom. Control 41(9), 1256–1270 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Utkin, V., et al.: Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron. 40(1), 23–36 (1993)

    Article  Google Scholar 

  31. Wood, R., Cazzolato, B.: An alternative nonlinear control law for the global stabilization of the pvtol vehicle. IEEE Trans. Autom. Control 52(7), 1282–1287 (2007)

    Article  MathSciNet  Google Scholar 

  32. Xian, B., Diao, C., Zhao, B., Zhang, Y.: Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation. Nonlinear Dyn. 79(4), 2735–2752 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zavala-Río, A., Fantoni, I., Lozano, R.: Global stabilization of a pvtol aircraft model with bounded inputs. Int. J. Control 76(18), 1833–1844 (2003)

    Article  MATH  Google Scholar 

  34. Zhu, B., Wang, Q., Huo, W.: Longitudinal-lateral velocity control design and implementation for a model-scaled unmanned helicopter. Nonlinear Dyn. 76(2), 1579–1589 (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Aguilar-Ibáñez.

Additional information

This research was supported by the Centro de Investigación en Computaci ón of the Instituto Politecnico Nacional (CIC-IPN), and by the Secretar ía de Investigación y Posgrado of the Instituto Politecnico Nacional (SIP-IPN), under Research Grants 20150929, 20151187 and 20150351.

Appendix

Appendix

Proof of Lemma 2

Notice that the assumption (ii) is a direct consequence of both the Lemma 1 and the definition of r given in (10). We first show that \(\left| q_{3}(t)\right| \le \overline{\theta }\), for all \(t>0\). From the definition of \(q_{3}\), given in (12), and restrictions (i) and (iii), we have that following inequality:

$$\begin{aligned} \left| q_{3}\right| \le \left| \frac{1}{k_{2}}\left( s_{a}\left[ \widetilde{q}_{1}\right] +s_{b}\left[ p_{1}\right] +z_{1}\right) \right| \le \frac{a+b+\overline{z}}{k_{2}}\le \overline{\theta }, \end{aligned}$$
(28)

holds. Now, if a, b, and \(k_{2}\) fulfill the condition (13), then we can assure that \(\left| q_{3}\right| \le \) \(\overline{\theta }\). This fact implies, both, that the term \(\tan \left[ q_{3}\right] \) is well defined, and the system (12) is locally Lipschitz.

Boundedness of (\(q_{1},p_{1}\)):

Now, we show that \(p_{1}\) is bounded. So, using the positive function \( V_{1}=p_{1}^{2}/2\), we have that the time derivative of \(V_{1}\), along the trajectories of the second equation of (12), leads to:

$$\begin{aligned} \dot{V}_{1}=-k_{r}(t)p_{1}\tan \left[ \frac{1}{k_{2}}\left( s_{a}\left[ \widetilde{q}_{1}\right] +s_{b}\left[ p_{1}\right] +z_{1}\right) \right] , \end{aligned}$$

where \(k_{r}(t)>0\). Since \(z_{1}\) is a decreasing function, there is a finite time \(T_{0}>0\), where \(\left| z_{1}(T_{0})\right| =\gamma \). Thus, selecting \(b>a+\gamma \), we have that \(\dot{V}_{1}<0\), for all \( \left| p_{1}\right| >\) \(b+\gamma \). So, there is a finite time \( T_{1}>T_{0}\), afterward \(\left| p_{1}(t)\right| <b\), for all \( t>T_{1}\), that is, \(p_{1}\) is uniformly bounded, and consequently, the system of Eq. (12) is globally Lipschitz. Therefore, the state \( q_{1}\) remains bounded during a finite time, and a finite time of escape does not exists [11]. To analyze the boundedness of \( q_{1}\), we must note that \(s_{b}\left[ p_{1}\right] =p_{1}\), for all \(t>T_{1}\) . Hence, the system (12) reads as:

$$\begin{aligned} \dot{q}_{1}= & {} p_{1}; \nonumber \\ \dot{p}_{1}= & {} -(1-r)\tan \left[ \frac{1}{k_{2}}(s_{a}[\widetilde{q} _{1}]+p_{1}+z_{1})\right] , \end{aligned}$$
(29)

where

$$\begin{aligned} \left| p_{1}(t)\right| \le b ; \left| z_{1}\right| \le \gamma , \end{aligned}$$
(30)

for all \(t>T_{1}\). Using the following function

$$\begin{aligned} V_{(11)}=\int _{0}^{\widetilde{q}_{1}}\tan \left[ \frac{1}{k_{2}}s_{a}\left[ x \right] \right] \hbox {d}x+\frac{p_{1}^{2}}{2}. \end{aligned}$$
(31)

Notice that \(V_{(11)}\) is a well-defined Lyapunov function because, from inequality (28), \(a/k_{2}<\overline{\theta }\) holds. Furthermore, it is easy to show that the time derivative of \(V_{(11)}\), around the trajectories of (29), is given by:

$$\begin{aligned} \dot{V}_{(11)}=p_{1}q_{11}-rp_{1}\tan \left[ \frac{1}{k_{2}}(s_{a}[ \widetilde{q}_{1}]+p_{1}+z_{1})\right] -p_{1}q_{12} \end{aligned}$$
(32)

where

$$\begin{aligned} q_{11}= & {} \tan \left[ \frac{1}{k_{2}}s_{a}\left[ \widetilde{q}_{1}\right] \right] -\tan \left[ \frac{1}{k_{2}}(s_{a}[\widetilde{q}_{1}]+p_{1})\right] \\ q_{12}= & {} \tan \left[ \frac{1}{k_{2}}(s_{a}[\widetilde{q}_{1}]+p_{1}+z_{1}) \right] \\&+\,\tan \left[ \frac{1}{k_{2}}(s_{a}[\widetilde{q}_{1}]+p_{1})\right] \end{aligned}$$

From relation (13), we have that \(\tan q_{3}\) is a Lipschitz function, for all \(\left| q_{3}\right| \le \) \(\overline{\theta }\). Consequently, there is a \(L>0\), such that:

$$\begin{aligned} \left| q_{12}\right| \le L\left| z_{1}\right| . \end{aligned}$$

On the other hand, from p4, we have that:

$$\begin{aligned} p_{1}q_{11}<0;\forall \,p_{1}\ne 0. \end{aligned}$$

From the above two relations, we have that (32) can be upper bounded by:

$$\begin{aligned} \dot{V}_{(11)}\le p_{1}q_{11}+\left| r\right| b\tan \overline{ \theta }+bL\left| z_{1}\right| \end{aligned}$$

where \(p_{1}q_{11}\le 0\). Integrating the inequality above, we have that:

$$\begin{aligned} V_{(11)}(t)\le & {} b\tan \overline{\theta }\int _{0}^{t}\left| r(s)\right| ds+bL\int _{0}^{t}\left| z_{1}(s)\right| ds\nonumber \\&+V_{(11)}(0). \end{aligned}$$

Because the signals r and \(z_{1}\) satisfy (i) and (ii), we can assure that the left side of the last inequality is bounded, that is, \(V_{(11)}(t)\le M<\infty \), for all \(t>0\). Now, as \(V_{(11)}\) is radially bounded, then \(q_{1}\) and \(p_{1}\) are also bounded.

Convergence at the origin: From the last discussion, we can conclude that all solutions of (29) are well defined and are bounded. Hence, when \(t\rightarrow \infty \), the system (29) becomes to:

$$\begin{aligned} \dot{q}_{1}= & {} p_{1}; \nonumber \\ \dot{p}_{1}= & {} -\tan \left[ \frac{1}{k_{2}}\left( s_{a}\left[ \widetilde{q}_{1} \right] +p_{1}\right) \right] , \end{aligned}$$
(33)

with \(\left| p_{1}\right| \le b\). Using once again the corresponding Lyapunov function (31), we have, after using some simple algebra, the following equality:

$$\begin{aligned} \dot{V}_{2}=p_{1}\left( \tan \left[ \frac{1}{k_{2}}s_{a}\left[ \widetilde{q} _{1}\right] \right] -\tan \left[ \frac{1}{k_{2}}\left( s_{a}\left[ \widetilde{q}_{1}\right] +p_{1}\right) \right] \right) . \end{aligned}$$
(34)

From p3, we have that \(\dot{V}_{2}\le 0\). Invoking the theorem of LaSalle and using similar arguments as in the proof of the Lemma 1 (a), we conclude that the whole state of the system (33) asymptotically converges to the origin. This concludes the proof of the Lemma 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Ibáñez, C., Sossa-Azuela, J.H. & Suarez-Castanon, M.S. A backstepping-based procedure with saturation functions to control the PVTOL system. Nonlinear Dyn 83, 1247–1257 (2016). https://doi.org/10.1007/s11071-015-2400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2400-y

Keywords

Navigation