Skip to main content
Log in

Real-time image encryption using a low-complexity discrete 3D dual chaotic cipher

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an algorithm is proposed for real-time image encryption. This scheme employs a dual chaotic generator based on a three-dimensional discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the image data are injected into the dynamics of a master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the image data can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the encrypted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the image data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Álvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16, 2129–2151 (2006)

    Article  MATH  Google Scholar 

  2. Carroll, T., Pecora, L.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. I 38, 453–456 (1991)

  3. Masuda, N., Aihara, K.: Dynamical characteristics of discretized chaotic permutations. Int. J. Bifurcat. Chaos 12, 2087–2103 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurcat. Chaos 15, 119–151 (2005)

    Article  MathSciNet  Google Scholar 

  5. Socek, D., Li, S., Magliveras, S., Furht, B.: Enhanced 1-D chaotic key-based algorithm for image encryption. In: Proceedings of the International Conference Security and Privacy for Emerging Areas in Communication Networks, pp. 406–407 (2005)

  6. Gao, H., Zhang, Y., Liang, S., Li, D.: A new chaotic algorithm for image encryption. Chaos Solitons Fractals 29, 393–399 (2006)

    Article  MATH  Google Scholar 

  7. Pareek, N., Patidar, V., Sud, K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006)

    Article  Google Scholar 

  8. Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., Chen, G.: On the security defects of an image encryption scheme. Image Vis. Comput. 27, 1371–1381 (2009)

    Article  Google Scholar 

  9. Li, C., Li, S., Alvarez, G., Chen, G., Lo, K.: Cryptanalysis of a chaotic block cipher with external key and its improved version. Chaos Solitons Fractals 37, 299–307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Arroyo, D., Rhouma, R., Alvarez, G., Li, S., Fernandez, V.: On the security of a new image encryption scheme based on chaotic map lattices. Chaos Interdiscip. J. Nonlinear Sci. 18, 033112 (2008)

    Article  Google Scholar 

  11. Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with applications to communications. Phys. Rev. Lett. 74, 5028–5031 (1995)

    Article  Google Scholar 

  12. Sobhy, M., Shehata, A.: Secure computer communication using chaotic algorithms. Int. J. Bifurcat. Chaos 10, 2831–2839 (2000)

    Article  MATH  Google Scholar 

  13. Lorenz, E., Edward, N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  14. Cartwright, J., Piro, O.: The dynamics of Runge–Kutta methods. Int. J. Bifurcat. Chaos 2, 427–449 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Butcher, J.: A history of Runge–Kutta methods. Appl. Numer. Math. 20, 247–260 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zeng, X., Eykholt, R., Pielke, R.: Estimating the Lyapunov exponent spectrum from short time series of low precision. Phys. Rev. Lett. 66, 3229–3232 (1991)

    Article  Google Scholar 

  17. Christiansen, F., Rugh, H.: Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization. Nonlinearity 10, 1063 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Brown, R., Bryant, P.: Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A 43, 2787–2806 (1991)

    Article  MathSciNet  Google Scholar 

  19. Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dedieu, H., Kennedy, M.P., Hasler, M.: Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 40, 634–642 (1993)

    Article  Google Scholar 

  21. Haroun, M.F., Gulliver, T.A.: A new 3D chaotic cipher for encrypting two data streams simultaneously. Nonlinear Dyn. 81, 1053–1066 (2015)

  22. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York (1996)

    MATH  Google Scholar 

  23. Yang, T., Yang, L., Yang, C.: Cryptanalyzing chaotic secure communications using return maps. Phys. Lett. A 245, 495–510 (1998)

    Article  Google Scholar 

  24. Wu, X., Hu, H., Zhang, B.: Analyzing and improving a chaotic encryption method. Chaos Solitons Fractals 22, 367–373 (2004)

    Article  MATH  Google Scholar 

  25. Li, S., Álvarez, G., Chen, G.: Breaking a chaos-based secure communication scheme designed by an improved modulation method. Chaos Solitons Fractals 25, 109–120 (2005)

    Article  MATH  Google Scholar 

  26. Orue, A., Álvarez, G., Pastor, G., Romera, M., Montoya, F., Li, S.: A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis. Commun. Nonlinear Sci. Numer. Simul. 15, 3471–3483 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Orue, A., Fernandez, V., Álvarez, G., Pastor, G., Romera, M., Li, S., Montoya, F.: Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems. Phys. Lett. A 372, 5588–5592 (2008)

    Article  MATH  Google Scholar 

  28. Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59, 3320–3327 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fouda, J.S., Effa, J., Sabat, S., Ali, M.: A fast chaotic block cipher for image encryption. Commun. Nonlinear Sci. Numer. Simul. 19, 578–588 (2014)

    Article  MathSciNet  Google Scholar 

  30. Zhou, Y., Bao, L., Chen, C.L.: A new 1D chaotic system for image encryption. Signal Process. 97, 172–182 (2014)

    Article  Google Scholar 

  31. Abd El-Latif A., Niu, X.: A hybrid chaotic system and cyclic elliptic curve for image encryption. Int. J. Electron. Commun. 67, 136–143 (2013)

  32. Patidar, V., Pareek, N., Purohit, G., Sud, K.: A robust and secure chaotic standard map based pseudorandom permutation–substitution scheme for image encryption. Opt. Commun. 284, 4331–4339 (2011)

    Article  Google Scholar 

  33. Sayedzadeh, S., Mirzakuchaki, S.: A fast color image encryption algorithm based on coupled two dimensional piecewise chaotic map. Signal Process. 92, 1202–1215 (2012)

    Article  Google Scholar 

  34. Huang, X., Ye, G.: An efficient self-adaptive model for chaotic image encryption algorithm. Commun. Nonlinear Sci. Numer. Simul. 19, 4094–4104 (2014)

    Article  Google Scholar 

  35. Ghebleh, M., Kanso, A., Noura, H.: An image encryption scheme based on irregularly decimated chaotic maps. Signal Process. Image Commun. 29, 618–627 (2014)

    Article  Google Scholar 

  36. Chen, G., Mao, Y., Chui, C.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21, 749–761 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci. Numer. Simul. 17, 2943–2959 (2012)

  38. Zhang, L., Hu, X., Liu, Y., Wong, K.: A chaotic image encryption scheme owning temp-value feedback. Commun. Nonlinear Sci. Numer. Simul. 19, 3653–3659 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zhang, X., Mao, Y., Zhao, Z.: An efficient chaotic image encryption based on alternate circular S-boxes. Nonlinear Dyn. 78, 359–369 (2014)

  40. Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S., Mosavi, M.: A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimed. Tools Appl. 71, 1469–1497 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed F. Haroun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroun, M.F., Gulliver, T.A. Real-time image encryption using a low-complexity discrete 3D dual chaotic cipher. Nonlinear Dyn 82, 1523–1535 (2015). https://doi.org/10.1007/s11071-015-2258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2258-z

Keywords

Navigation