Skip to main content
Log in

Distributed backstepping-based adaptive fuzzy control of multiple high-order nonlinear dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the cooperative adaptive fuzzy control of multiple high-order nonlinear dynamics. The communication network topology is undirected and fixed. Each individual dynamics is modeled by a high-order integrator incorporating with unknown nonlinear dynamics and an unknown external disturbance. With the approximation capability of fuzzy logic systems, the unknown nonlinear dynamics is compensated by the adaptive fuzzy logic systems scheme. The negative effects of the approximation error and external disturbances are counteracted by employing the robustness terms. Under the backstepping framework, two cooperative adaptive fuzzy controllers are designed for each agent such that all agents ultimately achieve consensus. Moreover, these controllers are distributed in the sense that only the local state information between the agent and its neighbors is required to design the controller. Finally, a simulation example with four-order dynamics demonstrates the effectiveness of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khalil, H.K.: Nolinear Systems (Third edition). Prentice Hall, Upper Saddle River, NJ, USA (2002)

    Google Scholar 

  2. Olfati-Saber, R., Murray, R.M.: Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proceedings of the 50th IFAC World Congress. Barcelona, Spain: International Federation of Automatic Control. 346–352 (2002)

  3. Wang, X.H., Yadav, V., Balakrishnan, S.N.: Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans. Control Syst. Technol. 15(4), 672–679 (2007)

    Article  Google Scholar 

  4. Stilwell, D.J., Bishop, B.E.: Platoons of underwater vehicles. IEEE Control Syst. Mag. 20(6), 45–52 (2000)

    Article  Google Scholar 

  5. Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor fusion. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, Spain: IEEE, 6698–6703 (2005)

  6. Ji, M., Egerstedt, M.B.: Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)

    Article  Google Scholar 

  7. Lawton, J.R., Beard, R.W.: Synchronized multiple spacecraft rotations. Automatica 38(8), 1359–1364 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Vicsek, T., Czirk, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  Google Scholar 

  9. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbour rules. IEEE Trans. Automat. Contr. 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  10. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Contr. 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  11. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  12. Ren, W., Beard, R.W.: Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Contr. 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  13. Slotine, J.J.E., Li, W.: On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  14. Marino, R., Spong, M.: Nonlinear control techniques for flexible joint manipulators: A single link case study. In: Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 3: 1030–1036 (1996)

  15. Park, C.W.: Robust stable fuzzy control via fuzzy modeling and feedback linearization with its applications to controlling uncertain single-link flexible joint manipulators. J. Intell. Robot. Syst. 39(2), 131–147 (2004)

    Article  Google Scholar 

  16. Ren, W., Moore, K., Chen, Y.Q.: High-order consensus algorithms in cooperative vehicle systems. In: Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, Ft. Lauderdale, FL, USA: IEEE, 457–462 (2006)

  17. Jiang, F.C., Wang, L.: Consensus seeking of high-order dynamic multi-agent systems with fixed and switching topologies. Int. J. Control 83(2), 404–420 (2010)

    Article  MATH  Google Scholar 

  18. Yang, T., Jin, Y.H., Wang, W., Shi, Y.J.: Consensus of high-order continuous-time multi-agent systems with time-delays and switching topologies. Chin. Phys. B. 20(2), 020511–020516 (2011)

    Article  Google Scholar 

  19. Mo, L., Jia, Y.M.: \(H_{\infty }\) consensus control of a class of high-order multi-agent systems. IET Control Theory Appl. 5(1), 247–253 (2011)

    Article  MathSciNet  Google Scholar 

  20. Lin, P., Li, Z., Jia, Y., Sun, M.: High-order multi-agent consensus with dynamically changing topologies and time-delays. IET Control Theory Appl. 5(8), 976–981 (2001)

    Article  MathSciNet  Google Scholar 

  21. Seo, J.H., Shima, H., Back, J.: Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach. Automatica 45(11), 2659–2664 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dong, W.J., Ben Ghalia, M., Farrell, J.A.: Tracking control of multiple nonlinear systems via information interchange. in 50th IEEE Conference on Decision and Control and European Control Conference. 5076–5081, Orlando, FL, USA, December (2011)

  23. Dong, W.J.: On consensus of multiple uncertain nonlinear systems. In: Proceedings of the IEEE 7th Sensor Array and Multichannel Signal Processing Workshop. 385–388, Hoboken, NJ, USA, June (2012)

  24. Zhang, H.W., Lewis, F.L.: Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica 48(7), 1432–1439 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  26. Tong, S., Li, C., Li, Y.: Observer-based fuzzy adaptive control for strict-feedback nonlinear systems. Fuzzy Sets Syst. 160(12), 1749–1764 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tong, S., Li, C., Li, Y.: Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst. 160(19), 2755–2775 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Huo, B., Tong, S., Li, Y.: Adaptive fuzzy fault-tolerant output feedback control of uncertain nonlinear systems with actuator faults. Int. J. Syst. Sci. 44(12), 2365–2376 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall Inc, New Jersey (1994)

    Google Scholar 

  30. Wang, H., Liao, X., Huang, T.: Accelerated consensus to accurate average in multi-agent networks via state prediction. Nonlinear Dyn. 73(1–2), 551–563 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhao, L.W., Hua, C.C.: Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dyn. 75(1–2), 311–318 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Huang, J., Chen, J., Fang, H., et al.: Consensus of multiple high-order nonlinear systems with uncertainty. In: Proceedings of the 32nd Chinese Control Conference, Xi’an, China: IEEE, 7145–7149 (2013)

  33. Tong, S.C., He, X.L., Zhang, H.G.: A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans. Fuzzy Syst. 17(5), 1059–1069 (2009)

    Article  Google Scholar 

  34. Tong, S.C., Li, Y.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1), 168–180 (2012)

    Article  Google Scholar 

  35. Zou, A.M., Hou, Z.G.: Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach. IEEE Trans. Fuzzy Syst. 16, 886–897 (2008)

    Article  Google Scholar 

  36. Tong, S.C., Li, Y.M.: Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems. Sci. China Inf. Sci. 57(1), 1–14 (2014)

  37. Tong, S.C., Huo, B.Y., Li, Y.M.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)

    Article  Google Scholar 

  38. Wu, B., Wang, D., Poh, E.K.: Decentralized robust adaptive control for attitude synchronization under directed communication topology. J. Guid. Control Dyn. 34(4), 1276–1282 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grants 61120106010, 60925011, 61175112; the Social Science Foundation of Fujian Province under Grant 2014B182 and Beijing Education Committee Cooperation Building Foundation Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Dou, L., Fang, H. et al. Distributed backstepping-based adaptive fuzzy control of multiple high-order nonlinear dynamics. Nonlinear Dyn 81, 63–75 (2015). https://doi.org/10.1007/s11071-015-1973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1973-9

Keywords

Navigation