Skip to main content

Advertisement

Log in

Bifurcation and control of an eco-epidemiological system with environmental fluctuations: a stochastic approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper describes the dynamics of an infectious disease transmission modified Leslie–Gower type eco-epidemiological system in both deterministic and stochastic fluctuating environments with harvesting. The dynamics of the deterministic system is extensively investigated around coexistence equilibria. Sufficient conditions are derived for local and global stability of the system. The existence of Hopf bifurcation phenomenon is examined around interior equilibria of the system. Subsequently, we use normal form method and center manifold theorem to examine the nature of the Hopf bifurcation. The obtained results are useful to extract the criteria for disease extinction and control perspective. Later, a white noise term is incorporated to the system to describe the dynamics of the system in stochastic fluctuating environment. Sufficient conditions are derived for the mean square stability (MSS) of the system which can be used to evaluate necessary conditions for the asymptotic MSS and a threshold condition between asymptotic MSS and unstable system. Finally, some numerical simulations are carried out, and graphical illustrations are given in support of the analytical results obtained in both deterministic and stochastic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu, M., Wang, K.: Dynamics of two-prey one-predator system in random environments. J. Nonlinear Sci. 23, 751–775 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Seo, G., DeAngelies, D.L.: A predator–prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21, 811–833 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohn, J.P.: Saving the Salton Sea. Bioscience 50(4), 295 (2000)

    Article  Google Scholar 

  4. Chakraborty, K., Haldar, S., Kar, T.K.: Global stability and bifurcation analysis of a delay induced prey–predator system with stage structure. Nonlinear Dyn. 73, 1307–1325 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sarwardi, S., Haque, M., Mandal, P.K.: Persistence and global stability of Bazykin predator–prey model with Beddington–DeAngelis response function. Commun. Nonlinear Sci. Numer. Simul. 19(1), 189–209 (2014)

    Article  MathSciNet  Google Scholar 

  6. Auger, P., Mchich, R., Chowdhury, T., Sallet, G., Tchuente, M., Chattopadhyay, J.: Effects of a disease affecting a predator on the dynamics of a predator–prey system. J. Theor. Biol. 258(7), 344–351 (2009)

    Article  MathSciNet  Google Scholar 

  7. Li, C.H., Tsai, C.C., Yang, S.Y.: Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1042–1054 (2014)

    Article  MathSciNet  Google Scholar 

  8. Niu, B., Guo, Y.: Bifurcation analysis on the globally coupled Kuramoto oscillators with distributed time delays. Phys. D Nonlinear Phenom. 266, 23–33 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Das, K., Chakraborty, M., Chakraborty, K., Kar, T.K.: Modelling and analysis of a multiple delayed exploited ecosystem towards coexistence perspective. Nonlinear Dyn. 78(1), 505–523 (2014)

  10. Bhattacharyya, R., Mukhopadhyay, B.: On an epidemiological model with nonlinear infection incidence: local and global perspective. Appl. Math. Model. 35, 3166–3174 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hadeler, K.P., Freedman, H.I.: Predator-prey population with parasite infection. J. Math. Biol. 27, 609 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huo, H.F., Ma, Z.P.: Dynamics of a delayed epidemic model with non-monotonic incidence rate. Commun. Nonlinear Sci. Numer. Simul. 15(2), 459–468 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hudson, P.J., Dobson, A.P., Newborn, D.: Prevention of population cycles by parasite removal. Science 282, 2256 (1998)

    Article  Google Scholar 

  14. Fenton, A., Rands, S.A.: The impact of parasite manipulation and predator foraging behavior on predator–prey communities. Ecology 87(11), 2832 (2006)

    Article  Google Scholar 

  15. Venturino, E.: Epidemics in predator–prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 85 (2002)

    Article  Google Scholar 

  16. Freedman, H.I.: A model of predator–prey dynamics as modified by the action of parasite. Math. Biosci. 99, 143 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mukherjee, D.: A delayed prey–predator system with parasitic infection. Bio-Systems 85, 158–164 (2006)

    Article  Google Scholar 

  18. Maiti, A., Bera, S.P., Samanta, G.P.: A prey–predator model with micro-parasite infection in the predator. J. Biol. Syst. 16, 219–239 (2008)

    Article  MATH  Google Scholar 

  19. Hilker, F.M., Schmitz, K.: Disease-induced stabilization of predator prey oscillations. J. Theor. Biol. 255, 299–306 (2008)

    Article  Google Scholar 

  20. Zhang, F., Jin, Z., Sun, G.: Bifurcation analysis of a delayed epidemic model. Appl. Math. Comput. 216, 753–767 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yongzhen, P., Shuping, L., Changguo, L.: Effect of delay on a predator–prey model with parasitic infection. Nonlinear Dyn. 63, 311–321 (2011)

    Article  MathSciNet  Google Scholar 

  22. Bowong, S., Aziz Alaoui, A.M.: Optimal intervention strategies for tuberculosis. Commun. Nonlinear Sci. Numer. Simul. 18(6), 1441–1453 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gleit, A.: Optimal harvesting in continuous time with stochastic growth. Math. Biosci. 41, 111–123 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. El-Gohary, A.: Optimal control of the genital herpes epidemic. Chaos Solitons Fractals 12, 1817–1822 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. El-Gohary, A., Al-Ruzaiza, A.: Optimal control of nonhomogeneous prey predator models during finite and infinite time intervals. Appl. Math. Comput. 146, 495–508 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rudnicki, R.: Long-time behavior of a stochastic prey–predator model. Stoch. Process. Appl. 108, 93–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kar, T.K.: Influence of environmental noise on the Gomperz model of two species fishery. Ecol. Model. 173, 283–293 (2004)

    Article  Google Scholar 

  28. Saha, T., Bandyopadhyay, M.: Dynamical analysis of a delayed ratio-dependent prey–predator model within fluctuating environment. Appl. Math. Comput. 196, 458–478 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Cohn, J.P.: Saving the Salton Sea. Bioscience 50(4), 295 (2000)

    Article  Google Scholar 

  30. Lafferty, K.D., Morris, A.K.: Altered behaviour of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390 (1996)

    Article  Google Scholar 

  31. Peterson, R.O., Page, R.E.: Wolf density as a predator of predation rate. Swed. Wildl. Res., Suppl. 1 (1987)

  32. Courtney, W.: Tilapias as exotic species in the Americas. In: Costa-Pierce, B., Rakocy, J. (eds.) Tilapia Aquaculture in the Americas. World Aquaculture Society Books, Baton Rouge, LA (1997)

    Google Scholar 

  33. Pathak, S., Maiti, A., Bera, S.P.: Effect of time delay on a prey predator model with microparasite infection in the predator. J. Biol. Syst. 19(2), 365–387 (2011)

    Article  MATH  Google Scholar 

  34. Aziz-Alaoui, M.A.: Study of Leslie–Gower-type tritrophic population model. Chaos Solitons Fractals 14(8), 1275–1293 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Aziz-Alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Liu, W.M.: Criterion of hopf bifurcation without using eigenvalues. J. Math. Anal. Appl. 182, 250–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. Workman, J.T., Lenhart, S.: Optimal Control Applied to Biological Models. Chapman and Hall/CRC, Boca Raton, FL (2007)

    MATH  Google Scholar 

  38. Hackbush, W.A.: Numerical methods for solving parabolic equations with opposite orientations. Computing 20(3), 229–240 (1978)

    Article  MathSciNet  Google Scholar 

  39. Lahrouz, A., Omari, L., Kiouach, D.: Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal. Model. Control 16(1), 69–76 (2011)

    MathSciNet  Google Scholar 

  40. Huang, Z., Yang, Q., Cao, J.: Complex dynamics in a stochastic internal HIV model. Chaos Solitons Fractals 44, 954–963 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhang, Y., Zhang, Q.: Dynamic behavior in a delayed stage structured population model with stochastic fluctuation and harvesting. Nonlinear Dyn. 66, 231–245 (2011)

    Article  MATH  Google Scholar 

  42. Gikhman, I.I., Skorokhod, A.V.: The Theory of Stochastic processes: I. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  43. Gikhman, I.I., Skorokhod, A.V.: The Theory of Stochastic processes: II. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  44. Gikhman, I.I., Skorokhod, A.V.: The Theory of Stochastic processes: III. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  45. Sarkar, R.R., Banerjee, S.: Cancer self remission and tumor stability a stochastic approach. Math. Biosci. 196, 65–81 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  46. Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  47. Afanasev, V.N., Kolmanowskii, V.B., Nosov, V.R.: Mathematical Theory of Control System Design. Kluwer, Dordrecht (1996)

  48. Cai, L., Li, X.: A note on global stability of an SEI epidemic model with acute and chronic stages. Appl. Math. And Comput. 196, 923–930 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Mr. Haldar is very much thankful to UGC (ERO) for the fellowship under FDP scheme of UGC vide Letter No. F.TF.WB-009-01/13-14(ERO) dated 11.07.2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samadyuti Haldar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, S., Chakraborty, K., Das, K. et al. Bifurcation and control of an eco-epidemiological system with environmental fluctuations: a stochastic approach. Nonlinear Dyn 80, 1187–1207 (2015). https://doi.org/10.1007/s11071-015-1935-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1935-2

Keywords

Navigation