Skip to main content
Log in

Homoclinic bifurcation in a quasiperiodically excited impact inverted pendulum

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Homoclinic bifurcation for a nonlinear inverted pendulum impacting between two rigid walls under external quasiperiodic excitation is analyzed. The results for the homoclinic bifurcation of quasiperiodically excited smooth systems obtained by Ide and Wiggins are extended to the non-smooth ones. We present a method of Melnikov type to derive sufficient conditions under which the perturbed stable and unstable manifolds intersect transversally. Such a transversal Intersection implies the appearance of Smale horseshoe-type chaotic dynamics that is similar to that in the periodically forced smooth systems. As an application, by using a combination of analytical and numerical methods, a quasiperiodically excited impact oscillator of Duffing type with two frequencies is studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Awrejcewicz, J., Holicke, M.M.: Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  2. Bernardo, M.D., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, London (2008)

    Google Scholar 

  3. Fečkan, M.: Topological Degree Approach to Bifurcation Problems. Springer, Dordrecht (2008)

    Book  MATH  Google Scholar 

  4. Fečkan, M.: Bifurcation and Chaos in Discontinuous and Continuous Systems. Higher Education Press, Beijing (2011)

    Book  MATH  Google Scholar 

  5. Ibrahim, R.A.: Vibro-Impact Dynamics: Modelling. Mapping and Applications. Springer, Berlin (2009)

    Book  Google Scholar 

  6. Kunze, M.: Non-Smooth Dynamical Systems. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  7. Colombo, A., Bernardo, M.D., Hogan, S.J., Jeffrey, M.R.: Bifurcations of piecewise smooth flows: perspectives, methodologies and open problems. Phys. D 241, 1845–1860 (2012)

    Article  MathSciNet  Google Scholar 

  8. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D 241, 1826–1844 (2012)

    Article  MathSciNet  Google Scholar 

  9. Simpson, D.J.W., Meiss, J.D.: Aspects of bifurcation theory for piecewise-smooth, continuous systems. Phys. D 241, 1861–1868 (2012)

    Article  MathSciNet  Google Scholar 

  10. Leine, R.I., van Campen, D.H., van de Vrande, B.L.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105–164 (2000)

    Article  MATH  Google Scholar 

  11. Leine, R.I.: Bifurcations of equilibria in non-smooth continuous systems. Phys. D 223, 121–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casini, P., Vestroni, F.: Nonstandard bifurcations in oscillators with multiple discontinuity boundaries. Nonlinear Dyn. 35, 41–59 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Battelli, F., Lazzari, C.: Exponential dichotomies, heteroclinic orbits, and Melnikov functions. J. Differ. Equ. 86, 342–366 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gruendler, J.: Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations. J. Differ. Equ. 122, 1–26 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  16. Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 1–57 (1963)

    Google Scholar 

  17. Wiggins, S.: Global Bifurcations and Chaos-Analytical Methods. Springer, New York (1988)

    Book  MATH  Google Scholar 

  18. Yagasaki, K.: Detection of homoclinic bifurcations in resonance zones of forced oscillators. Nonlinear Dyn. 28, 285–307 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Siewe, M.S., Yamgoué, S.B., Kakmeni, F.M.M., Tchawoua, C.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010)

    Article  MATH  Google Scholar 

  20. Battelli, F., Fečkan, M.: Homoclinic trajectories in discontinuous systems. J. Dyn. Differ. Equ. 20, 337–376 (2008)

    Article  MATH  Google Scholar 

  21. Battelli, F., Fečkan, M.: Chaos in forced impact systems. Discrete Contin. Dyn. Syst. Ser. S 6, 861–890 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carmona, V., Fernandez-Garcia, S., Freire, E., Torres, F.: Melnikov theory for a class of planar hybrid systems. Phys. D 248, 44–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Du, Z., Zhang, W.: Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Comput. Math. Appl. 50, 445–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Granados, A., Hogan, S.J., Seara, T.M.: The Melnikov method and subharmonic orbits in a piecewise-smooth system. SIAM J. Appl. Dyn. Syst. 11, 801–830 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kukučka, P.: Melnikov method for discontinuous planar systems. Nonlinear Anal. Ser. A 66, 2698–2719 (2007)

    Article  MATH  Google Scholar 

  26. Awrejcewicz, J., Fečkan, M., Olejnik, P.: Bifurcations of planar sliding homoclinics. Math. Prob. Eng. 2006, 1–13 (2006)

    Google Scholar 

  27. Battelli, F., Fečkan, M.: Bifurcation and chaos near sliding homoclinics. J. Differ. Equ. 248, 2227–2262 (2010)

    Article  MATH  Google Scholar 

  28. Battelli, F., Fečkan, M.: An example of chaotic behaviour in presence of a sliding homoclinic orbit. Ann. Mat. Pura Appl. 189, 615–642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Battelli, F., Fečkan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Phys. D 241, 1962–1975 (2012)

    Article  MathSciNet  Google Scholar 

  30. Du, Z., Li, Y., Shen, J., Zhang, W.: Impact oscillators with homoclinic orbit tangent to the wall. Phys. D 245, 19–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wiggins, S.: Chaos in the quasiperiodically forced Duffing oscillator. Phys. Lett. A 124, 138–142 (1987)

    Article  MathSciNet  Google Scholar 

  32. Ide, K., Wiggins, S.: The bifurcation to homoclinic tori in the quasiperiodically forced Duffing oscillator. Phys. D 34, 169–182 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moon, F.C., Holmes, W.T.: Double Poincaré sections of a quasi-periodically forced, chaotic attractor. Phys. Lett. A 111, 157–160 (1985)

    Article  MathSciNet  Google Scholar 

  34. Vavriv, D.M., Ryabov, V.B., Sharapov, S.A., Ito, H.M.: Chaotic states of weakly and strongly nonlinear oscillators with quasiperiodic excitation. Phys. Rev. E 53, 103–113 (1996)

    Article  Google Scholar 

  35. Yagasaki, K.: Bifurcations and chaos in a quasi-periodically forced beam: theory, simulation and experiment. J. Sound Vib. 183, 1–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Avramov, K.V., Awrejcewicz, J.: Frictional oscillations under the action of almost periodic excitation. Meccanica 41, 119–142 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chow, S.-N., Shaw, S.W.: Bifurcations of subharmonics. J. Differ. Equ. 65, 304–320 (1986)

  38. Shaw, S.W., Rand, R.H.: The transition to chaos in a simple mechanical system. Int. J. Non-linear Mech. 24, 41–56 (1989)

  39. Shaw, S.W., Haddow, A.G., Hsieh, S.-R.: Properties of cross-well chaos in an impacting system. Philos. Trans. R. Soc. Lond. A 347, 391–410 (1994)

    Article  MATH  Google Scholar 

  40. Lenci, S.: On the suppressions of chaos by means of bounded excitations in an inverted pendulum. SIAM J. Appl. Math. 58, 1116–1127 (1998)

  41. Lenci, S., Rega, G.: A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dyn. 15, 391–409 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lenci, S., Rega, G.: Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation. Chaos Solitons Fractals 11, 2453–2472 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lenci, S., Rega, G.: Regular nonlinear dynamics and bifurcations of an impacting system under general periodic excitation. Nonlinear Dyn. 34, 249–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Demeio, L., Lenci, S.: Asymptotic analysis of chattering oscillations for an impacting inverted pendulum. Q. J. Mech. Appl. Math. 59, 419–434 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Du, Z., Li, Y., Zhang, W.: Type I periodic motions for nonlinear impact oscillators. Nonlinear Anal. Ser. A 67, 1344–1358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, Y., Du, Z., Zhang, W.: Asymmetric type II periodic motions for nonlinear impact oscillators. Nonlinear Anal. Ser. A 68, 2681–2696 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shen, J., Du, Z.: Double impact periodic orbits for an inverted pendulum. Int. J. Non-linear Mech. 46, 1177–1190 (2011)

    Article  Google Scholar 

  48. Piiroinen, P.T., Kuznetsov, Y.A.: An event-driven method to simulate Filippov systems with accurate computing of sliding motions. ACM Trans. Math. Softw. 34(3), Article no. 13 (2008).

  49. Mancho, A.M., Small, D., Wiggins, S., Ide, K.: Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields. Phys. D 182, 188–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Jin, L., Lu, Q.-S., Twizell, E.H.: A method for calculating the spectrum of Lyapunov exponents by local maps in non-smooth impact-vibrating systems. J. Sound Vib. 298, 1019–1033 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yue, Y., Xie, J., Gao, X.: Determining Lyapunov spectrum and Lyapunov dimension based on the Poincaré map in a vibro-impact system. Nonlinear Dyn. 69, 743–753 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Parthasarathy, S.: Homoclinic bifurcation sets of the parametrically driven Duffing oscillator. Phys. Rev. A 46, 2147–2150 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are very grateful to the editor and the referees for their careful checking and helpful comments that have notably improved the paper. This work is supported by National Natural Science Foundation of China under Grant No. 11371264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengdong Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Du, Z. Homoclinic bifurcation in a quasiperiodically excited impact inverted pendulum. Nonlinear Dyn 79, 1061–1074 (2015). https://doi.org/10.1007/s11071-014-1723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1723-4

Keywords

Mathematics Subject Classification

Navigation