Skip to main content

Advertisement

Log in

Energy efficiency in friction-based locomotion mechanisms for soft and hard robots: slower can be faster

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many recent designs of soft robots and nano-robots feature locomotion mechanisms that cleverly exploit slipping and sticking phenomena. These mechanisms have many features in common with peristaltic locomotion found in the animal world. The purpose of the present paper is to examine the energy efficiency of a locomotion mechanism that exploits friction. With the help of a model that captures most of the salient features of locomotion, we show how locomotion featuring stick-slip friction is more efficient than a counterpart that only features slipping. Our analysis also provides a framework to establish how optimal locomotion mechanisms can be selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. While the energy \(e_5\) dissipated for \(\omega =0.95\omega _{n_1}\) does decrease after a certain amplitude \(a\) is reached, this region in parameter space is not feasible because when the two mass are too close to each other there is a possibility that the normal force on one of them will vanish and that mass would then loose contact with the ground.

  2. According to Eq. (11) and Fig. 12a, the minimum \(\omega _{n_1}\) is 10 with \(m_1=m_2\).

References

  1. Chernous’ko, F.L.: The optimum rectilinear motion of a two-mass system. J. Appl. Math. Mech. 66(1), 1–7 (2002). doi:10.1016/S0021-8928(02)00002-3

    Article  MathSciNet  Google Scholar 

  2. Denny, M.: The role of gastropod pedal mucus in locomotion. Nature 285(1), 160–161 (1980). doi:10.1038/285160a0

    Article  MathSciNet  Google Scholar 

  3. Donald, B., Levey, C., McGray, C., Rus, D., Sinclair, M.: Power delivery and locomotion of untethered microactuators. J. Microelectromech. Syst. 12(6), 947–959 (2003). doi:10.1109/JMEMS.2003.821468

    Article  Google Scholar 

  4. Driesen, W.: Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle: Application to mobile microrobots. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2008). http://infoscience.epfl.ch/record/121454

  5. Driesen, W., Rida, A., Breguet, J.M., Clavel, R.: Friction based locomotion module for mobile Mems robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 3815–3820 (2007). doi:10.1109/IROS.2007.4399321

  6. Edeler, C., Meyer, I., Fatikow, S.: Modeling of stick-slip micro-drives. J. Micro-Nano Mechatron. 6(3–4), 65–87 (2011). doi:10.1007/s12213-011-0034-9

    Article  Google Scholar 

  7. Elder, H.Y.: Peristaltic mechanisms. In: Elder, H.Y., Trueman, E.R. (eds.) Aspects of Animal Movement, vol. 5, pp. 71–92. Society for Experimental Biology, Seminar Series, Cambridge University Press, Cambridge, UK (1985)

  8. Frutiger, D., Kratochvil, B., Nelson, B.: MagMites—Microrobots for wireless microhandling in dry and wet environments. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1112–1113 (2010). doi:10.1109/ROBOT.2010.5509678

  9. Li, H., Furuta, K., Chernousko, F.: Motion generation of the Capsubot using internal force and static friction. In: 45th IEEE Conference on Decision and Control, pp. 6575–6580 (2006). doi:10.1109/CDC.2006.377472

  10. Majidi, C.: Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 1(P), 5–11 (2013). doi:10.1089/soro.2013.000

  11. McNeil Alexander, R.: Principles of Animal Locomotion. Princeton University Press, Princeton (2003)

  12. Murthy, R., Das, A., Popa, D.O.: ARRIpede: a stick-slip micro crawler/conveyor robot constructed via 2.5D MEMS assembly. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008, pp. 34–40 (2008). doi:10.1109/IROS.2008.4651181

  13. Murthy, R., Das, A., Popa, D.O., Stephanou, H.E.: ARRIpede: An assembled die-scale microcrawler. Adv. Robot. 25(8), 965–990 (2011). doi:10.1163/016918611X568602

    Article  Google Scholar 

  14. Nagy, Z., Frutiger, D., Leine, R., Glocker, C., Nelson, B.: Modeling and analysis of wireless resonant magnetic microactuators. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1598–1603 (2010). doi:10.1109/ROBOT.2010.5509260

  15. Nagy, Z., Leine, R., Frutiger, D., Glocker, C., Nelson, B.: Modeling the motion of microrobots on surfaces using nonsmooth multibody dynamics. IEEE Trans. Robot. 28(5), 1058–1068 (2012). doi:10.1109/TRO.2012.2199010

    Article  Google Scholar 

  16. Nakazato, Y., Sonobe, Y., Toyama, S.: Development of an in-pipe micro mobile robot using peristalsis motion. J. Mech. Sci. Technol. 24(1), 51–54 (2010). doi:10.1007/s12206-009-1174-x

  17. Pawashe, C., Floyd, S., Sitti, M.: Modeling and experimental characterization of an untethered magnetic micro-robot. Int. J. Robot. Res. 28(8), 1077–1094 (2009). doi:10.1177/0278364909341413

  18. Seok, S., Onal, C.D., Cho, K.J., Wood, R.J., Rus, D., Kim, S.: Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18(5), 1485–1497 (2013). doi:10.1109/TMECH.2012.2204070

    Article  Google Scholar 

  19. Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robots. In: Proceedings of the National Academy of Sciences, USA, vol. 108, no. 51, pp. 20400–20403 (2011). doi:10.1073/pnas.1116564108

  20. Sitti, M.: Miniature devices: voyage of the microrobots. Nature 458(7242), 1121–1122 (2008). doi:10.1038/4581121a

    Article  Google Scholar 

  21. Suzuki, Y., Li, H., Furuta, K.: Locomotion generation of friction board with an inclined slider. In: 46th IEEE Conference on Decision and Control, 2007, pp. 1937–1943 (2007). doi:10.1109/CDC.2007.4434269

  22. Tanaka, Y., Ito, K., Nakagaki, T., Kobayashi, R.: Mechanics of peristaltic locomotion and role of anchoring. J. R. Soc. Interface 9(67), 222–233 (2012). doi:10.1098/rsif.2011.0339

    Article  Google Scholar 

  23. Wood, R.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24(2), 341–347 (2008). doi:10.1109/TRO.2008.916997

    Article  Google Scholar 

  24. Zimmermann, K., Zeidis, I.: Worm-like locomotion as a problem of nonlinear dynamics. J. Theor. Appl. Mech. 45(1), 179–187 (2007)

    Google Scholar 

Download references

Acknowledgments

Support from a Defense Advanced Research Projects (DARPA) 2012 Young Faculty Award to Carmel Majidi is gratefully acknowledged. Xuance Zhou is grateful for the support of a Anselmo Macchi Fellowship for Engineering Graduate Students and a J. K. Zee Fellowship. The authors also take this opportunity to thank an anonymous reviewer for their constructive criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver M. O’Reilly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Majidi, C. & O’Reilly, O.M. Energy efficiency in friction-based locomotion mechanisms for soft and hard robots: slower can be faster. Nonlinear Dyn 78, 2811–2821 (2014). https://doi.org/10.1007/s11071-014-1627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1627-3

Keywords

Navigation