Skip to main content
Log in

Periodic responses and chaotic behaviors of an axially accelerating viscoelastic Timoshenko beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the steady-state periodic response and the chaos and bifurcation of an axially accelerating viscoelastic Timoshenko beam. For the first time, the nonlinear dynamic behaviors in the transverse parametric vibration of an axially moving Timoshenko beam are studied. The axial speed of the system is assumed as a harmonic variation over a constant mean speed. The transverse motion of the beam is governed by nonlinear integro-partial-differential equations, including the finite axial support rigidity and the longitudinally varying tension due to the axial acceleration. The Galerkin truncation is applied to discretize the governing equations into a set of nonlinear ordinary differential equations. Based on the solutions obtained by the fourth-order Runge–Kutta algorithm, the stable steady-state periodic response is examined. Besides, the bifurcation diagrams of different bifurcation parameters are presented in the subcritical and supercritical regime. Furthermore, the nonlinear dynamical behaviors are identified in the forms of time histories, phase portraits, Poincaré maps, amplitude spectra, and sensitivity to initial conditions. Moreover, numerical examples reveal the effects of various terms Galerkin truncation on the amplitude–frequency responses, as well as bifurcation diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wickert, J.A.: Non-linear vibration of a traveling tensioned beam. Int. J. Non-linear Mech. 27, 503–517 (1992)

    Article  MATH  Google Scholar 

  2. Öz, H.R., Pakdemirli, M.: Vibrations of an axially moving beam with time-dependent velocity. J. Sound Vib. 227, 239–257 (1999)

    Article  Google Scholar 

  3. Mockensturm, E.M., Perkins, N.C., Ulsoy, A.G.: Stability and limit cycles of parametrically excited, axially moving strings. J. Vib. Acoust. 118, 346–351 (1996)

    Article  Google Scholar 

  4. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58, 91–116 (2005)

    Article  Google Scholar 

  5. Hu, Y.D., Zhang, J.Z.: Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field. Appl. Math. Mech. (Engl. Ed.) 34, 1405–1420 (2013)

    Article  MATH  Google Scholar 

  6. Pellicano, F., Fregolent, A., Bertuzzi, A., Vestroni, F.: Primary and parametric non-linear resonance of a power transmission belt: experimental and theoretical analysis. J. Sound Vib. 244, 669–684 (2001)

    Article  Google Scholar 

  7. Chen, L.Q., Yang, X.D.: Stability in parametric resonance of axially moving viscoelastic beams with time-dependent speed. J. Sound Vib. 284, 879–891 (2005)

    Article  Google Scholar 

  8. Ghayesh, M.H., Balar, S.: Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams. Int. J. Solids Struct. 45, 6451–6467 (2008)

    Article  MATH  Google Scholar 

  9. Pellicano, F., Vestroni, F.: Complex dynamics of high-speed axially moving systems. J. Sound Vib. 258, 31–44 (2002)

    Article  Google Scholar 

  10. Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281, 611–626 (2005)

    Article  Google Scholar 

  11. Yang, X.D., Chen, L.Q.: Bifurcation and chaos of an axially accelerating viscoelastic beam. Chaos Solitons Fract. 23, 249–258 (2005)

    Article  MATH  Google Scholar 

  12. Chen, L.Q., Yang, X.D.: Transverse nonlinear dynamics of axially accelerating viscoelastic beams based on 4-term Galerkin truncation. Chaos Solitons Fract. 27, 748–757 (2006)

    Article  MATH  Google Scholar 

  13. Marynowski, K., Kapitaniak, T.: Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension. Int. J. Non-linear Mech. 42, 118–131 (2007)

    Article  MATH  Google Scholar 

  14. Ding, H., Chen, L.Q.: Nonlinear dynamics of axially accelerating viscoelastic beams based on differential quadrature. Acta Mech. Solida Sin. 22, 267–275 (2009)

    Article  Google Scholar 

  15. Chen, L.H., Zhang, W., Yang, F.H.: Nonlinear dynamics of higher-dimensional system for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations. J. Sound Vib. 329, 5321–5345 (2010)

    Article  Google Scholar 

  16. Marynowski, K.: Dynamic analysis of an axially moving sandwich beam with viscoelastic core. Compos. Struct. 94, 2931–2936 (2012)

    Article  Google Scholar 

  17. Ghayesh, M.H., Kafiabad, H.A., Raid, T.: Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int. J. Solids Struct. 49, 227–243 (2012)

    Article  Google Scholar 

  18. Yu, W.Q., Chen, F.Q.: Multi-pulse homoclinic orbits and chaotic dynamics for an axially moving viscoelastic beam. Arch. Appl. Mech. 83, 647–660 (2013)

    Article  MATH  Google Scholar 

  19. Ding, H., Zu, J.W.: Periodic and chaotic responses of an axially accelerating viscoelastic beam under two-frequency excitations. Int. J. Appl. Mech. 5, 1350019 (2013)

    Article  Google Scholar 

  20. Lee, U., Kim, J., Oh, H.: Spectral analysis for the transverse vibration of an axially moving Timoshenko beam. J. Sound Vib. 271, 685–703 (2004)

    Article  MATH  Google Scholar 

  21. Tang, Y.Q., Chen, L.Q., Yang, X.D.: Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary conditions. Int. J. Mech. Sci. 50, 1448–1458 (2008)

  22. Ghayesh, M.H., Balar, S.: Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl. Math. Model. 34, 2850–2859 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, L.Q., Tang, Y.Q., Lim, C.W.: Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko beams. J. Sound Vib. 329, 547–565 (2010)

    Article  Google Scholar 

  24. Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of an axially moving Timoshenko beam with an internal resonance. Nonlinear Dyn. 73, 39–52 (2013)

    Article  MathSciNet  Google Scholar 

  25. Tang, Y.Q., Chen, L.Q., Zhang, H.J., Yang, S.P.: Stability of axially accelerating viscoelastic Timoshenko beams: Recognition of longitudinally varying tensions. Mech. Mach. Theory 62, 31–50 (2013)

    Article  Google Scholar 

  26. Chen, L.Q., Zhao, W.J.: A conserved quantity and the stability of axially moving nonlinear beams. J. Sound Vib. 286, 663–668 (2005)

    Article  Google Scholar 

  27. Wang, B., Deng, Z.C., Zhang, K.: Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory. Appl. Math. Mech. (Engl. Ed.) 34, 269–280 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Parker, R.G., Lin, Y.: Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations. J. Appl. Mech. 68, 49–57 (2001)

    Article  MATH  Google Scholar 

  29. Yang, T.Z., Fang, B., Chen, Y., Zhen, Y.X.: Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations. Int. J. Non-Linear Mech. 44, 230–238 (2009)

    Article  Google Scholar 

  30. Chen, L.Q., Yang, X.D., Cheng, C.J.: Dynamic stability of an axially accelerating viscoelastic beam. Eur. J. Mech. A Solids. 23, 659–666 (2004)

    Article  MATH  Google Scholar 

  31. Ghayesh, M.H.: Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance. Int. J. Mech. Sci. 53, 1022–1037 (2011)

    Article  Google Scholar 

  32. Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. ASME J. Vibr. Acoust. 122, 21–30 (2000)

    Article  Google Scholar 

  33. Ding, H., Yan, Q.Y., Zu, J.W.: Chaotic dynamics of an axially accelerating viscoelastic beam in the supercritical regime. Int. J. Bifurc. Chaos 24, 1450062 (2014)

    Article  MathSciNet  Google Scholar 

  34. Chen, L.Q., Tang, Y.Q.: Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. ASME J. Vib. Acoust. 134, 011008 (2012)

    Article  Google Scholar 

  35. Cai, M., Liu, W.F., Liu, J.K.: Bifurcation and chaos of airfoil with multiple strong nonlinearities. Appl. Math. Mech. (Engl. Ed.) 34, 627–636 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the State Key Program of National Natural Science Foundation of China (No. 11232009), the National Natural Science Foundation of China (No. 11372171), and Innovation Program of Shanghai Municipal Education Commission (No. 12YZ028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, QY., Ding, H. & Chen, LQ. Periodic responses and chaotic behaviors of an axially accelerating viscoelastic Timoshenko beam. Nonlinear Dyn 78, 1577–1591 (2014). https://doi.org/10.1007/s11071-014-1535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1535-6

Keywords

Navigation