Skip to main content
Log in

Stability switches and global Hopf bifurcation in a nutrient-plankton model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to the analysis of a nutrient-plankton model with delayed nutrient cycling. Firstly, stability and Hopf bifurcation of the positive equilibrium are given, and the direction and stability of Hopf bifurcation are also studied. We show that delay, which is considered in the decomposition of dead phytoplankton, can induce stability switches, such that the positive equilibrium switches from stability to instability, to stability again and so on. One can observe that the influence of delay on the system dynamics is essential. Then, we prove that there exists at least one positive periodic solution as the time delay varies in some regions using the global Hopf bifurcation result of Wu (1998, Trans Am Math Soc 350:4799–4838) for functional differential equations. Furthermore, the impact of input rate of nutrient is discussed along with numerical results, and the role of delay in the nutrient cycling is interpreted ecologically. Finally, several groups of illustrations are performed to justify analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdllaoui, A.E., Chattopadhyay, J., Arino, O.: Comparisons, by models, of some basic mechanisms acting on the dynamics of the zooplankton-toxic phytoplankton systems. Math. Mod. Meth. Appl. S. 12(10), 1421–1451 (2002)

    Article  MATH  Google Scholar 

  2. Odum, E.P.: Fundamentals of Ecology. Saunders, Philadelphia (1971)

    Google Scholar 

  3. Anderson, D.M.: Turning back the harmful red tide. Nature 338(7), 513–514 (1997)

    Article  Google Scholar 

  4. Huppert, A., Blasius, B., Stone, L.: A model of phytoplankton blooms. Am. Nat. 159, 156–171 (2002)

    Article  Google Scholar 

  5. Hallegraeff, G.M.: A review of harmful algae blooms and their apparent global increase. Phycologia 32, 79–99 (1993)

    Article  Google Scholar 

  6. Chattopadhyay, J., Sarkar, R.R., El-Abdllaoui, A.: A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. 19, 137–161 (2002)

    Article  MATH  Google Scholar 

  7. Mei, L.F., Zhang, X.Y.: Existence and nonexistence of positive steady states in multi-species phytoplankton dynamics. J. Differ. Equat. 253, 2025–2063 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Roy, S.: The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy. Theor. Popul. Biol. 75, 68–75 (2009)

    Article  MATH  Google Scholar 

  9. Wang, Y., Jiang, W., Wang, H.: Stability and global Hopf bifurcation in toxic phytoplankton-zooplankton model with delay and selective harvesting. Nonlinear Dyn. 73, 881–896 (2013)

    Article  MATH  Google Scholar 

  10. Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing phytoplankton-zooplankton interactions. Nonlinear Anal. RWA 10, 314–332 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhao, J.T., Wei, J.J.: Stability and bifurcation in a two harmful phytoplankton-zooplankton system. Chaos. Solitons Fractals 39, 1395–1409 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Banerjee, M., Venturino, E.: A phytoplankton-toxic phytoplankton-zooplankton model. Ecol. Complex. 8, 239–248 (2011)

  13. He, X., Ruan, S.: Global stability in chemostat-type plankton models with delayed nutrient recycling. J. Math. Biol. 37, 253–271 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pardo, O.: Global stability for a phytoplankton-nutrient system. J. Biol. Systems 8, 195–209 (2000)

    Google Scholar 

  15. Das, S., Ray, S.: Effect of delay on nutrient cycling in phytoplankton-zooplankton interactions in estuarine system. Ecol. Model. 215, 69–76 (2008)

    Article  Google Scholar 

  16. Zhang, T.R., Wang, W.D.: Hopf bifurcation and bistability of a nutrient-phytoplankton-zooplankton model. Appl. Math. Model. 36, 6225–6235 (2012)

    Article  MathSciNet  Google Scholar 

  17. Barton, A.D., Dutkiewicz, S., et al.: Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010)

    Article  Google Scholar 

  18. Hale, J.K.: Verduyn Lunel. Introduction to Functional Differential Equations. Springer, New York, S.M. (1993)

    Google Scholar 

  19. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959)

    Article  Google Scholar 

  20. Ruan, S.G., Wei, J.J.: On the zeros of transcendental function with applications to stability of delay differential equations with two delays. Dyn. Contin Discret. Impulse Systems 10, 863–874 (2003)

    MATH  MathSciNet  Google Scholar 

  21. Ruan, S.G., Wei, J.J.: On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J. Math. Appl. Med. Biol. 18, 41–52 (2001)

    Article  MATH  Google Scholar 

  22. Hassard, B.D., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  23. Wu, J.H.: Symmetric functional differential equations and neural networks with memory. Transac. Am. Math. Soc. 350, 4799–4838 (1998)

    Article  MATH  Google Scholar 

  24. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities (Theory and Application): Ordinary Differential Equations I. Academic Press, New York and London (1969)

    Google Scholar 

  25. Qu, Y., Wei, J.J., Ruan, S.G.: Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays. Physica D 239, 2011–2024 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Muldowney, J.S.: Compound matrices and ordinary differential equations. Rocky Mountain J. Math. 20, 857–872 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li, M.Y., Muldowney, J.: On Bendixson’s criterion. J. Differ. Equ. 106, 27–39 (1994)

    Article  MathSciNet  Google Scholar 

  28. Wang, W.Q., Wang, M.: The Mangroves of China. Sciences Press, Beijing (2007). (in chinese)

    Google Scholar 

  29. Pierre, N.T.: Dynamical Systems: An Introduction with Applications in Economics and Biology. Springer-Verlag, Heidelberg (1995)

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the editors and the reviewers for the helpful comments. This work is supported in part by NNSF of China(No.11371112), by the Heilongjiang Provincial Natural Science Foundation (No.A201208), and by the Fundamental Research Founds for the Central Universities Grant No. HIT. IBRSEM. 201332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Jiang.

Appendix

Appendix

1.1 Properties of Hopf bifurcation

In this section, based on numerical evaluation of Hopf bifurcation (see Hassard et al. [22], Chap. 3), and using a similar computation process as in [6], we give the computing process of the properties of Hopf bifurcation and stability of the bifurcating periodic solutions from \(S^{*}\) under the conditions of Theorem 1 \((ii)\). We obtain the coefficients determining the important quantities:

  • \(g_{20}=2\bar{D}(\Delta _{11}+\bar{\rho }_{1}^{*}\Delta _{21} + \bar{\rho }_{2}^{*}\Delta _{31}), g_{11}=\bar{D}(\Delta _{12} + \bar{\rho }_{1}^{*}\Delta _{22}+\bar{\rho }_{2}^{*}\Delta _{32}),\)

  • \(g_{02}=2\bar{D}(\Delta _{13}+\bar{\rho }_{1}^{*}\Delta _{23} + \bar{\rho }_{2}^{*}\Delta _{33}), g_{21}=2\bar{D}(\Delta _{14} + \bar{\rho }_{1}^{*}\Delta _{24} + \bar{\rho }_{2}^{*}\Delta _{34}),\)

where

  • \(\Delta _{11}=\rho _{1} b_{12}+b_{20}, \Delta _{12} = (\rho _{1}+\bar{\rho }_{1}) b_{12}+2b_{20}, \Delta _{13}=\bar{\rho }_{1} b_{12}+b_{20},\)

  • \(\Delta _{14}=b_{12}(W_{11}^{2}(0)+\rho _{1}W_{11}^{1}(0)+\frac{1}{2}W_{20}^{2}(0) +\frac{1}{2}\bar{\rho }_{1}W_{20}^{1}(0))+b_{20}(W_{20}^{1}(0)+2W_{11}^{1}(0))\),

  • \(\Delta _{21}=c_{12}\rho _{1}+c_{23}\rho _{1}\rho _{2}+c_{20}\rho _{1}^{2},\)

  • \(\Delta _{22}=c_{12}(\rho _{1}+\bar{\rho }_{1})+c_{23}(\rho _{1}\bar{\rho }_{2} + \bar{\rho }_{1}\rho _{2})+2c_{20}\rho _{1}\bar{\rho }_{1},\)

  • \(\Delta _{23}=c_{12}\bar{\rho }_{1}+c_{23}\bar{\rho }_{1}\bar{\rho }_{2} + c_{20}\bar{\rho }_{1}^{2},\)

  • \(\Delta _{24}\!=\!c_{12}(W_{11}^{2}(0)+\rho _{1}W_{11}^{1}(0) + \frac{1}{2}W_{20}^{2}(0)+\frac{1}{2}\bar{\rho }_{1}W_{20}^{1}(0)) +c_{23}(\frac{1}{2}\bar{\rho }_{2}W_{20}^{2}(0) +\frac{1}{2}\bar{\rho }_{1}W_{20}^{3} (0)+\rho _{2}W_{11}^{2}(0) + \rho _{1}W_{11}^{3}(0))+c_{20}(\bar{\rho }_{1} W_{20}^{2}(0)+2\rho _{1} \qquad W_{11}^{2}(0))\)

  • \(\Delta _{31}=d_{23}\rho _{1}\rho _{2}+d_{20}\rho _{1}^{2},\)

  • \(\Delta _{32}=d_{23}(\rho _{1}\bar{\rho }_{2}+\bar{\rho }_{1}\rho _{2}) + 2d_{20}\rho _{1}\bar{\rho }_{1},\)

  • \(\Delta _{33}=d_{23}\bar{\rho }_{1}\bar{\rho }_{2}+d_{20}\bar{\rho }_{1}^{2},\)

  • \(\Delta _{34}=d_{23}(\frac{1}{2}\bar{\rho }_{2}W_{20}^{2}(0) + \frac{1}{2}\bar{\rho }_{1}W_{20}^{3}(0)+\rho _{2}W_{11}^{2}(0) +\rho _{1}W_{11}^{3}(0))+d_{20}(\bar{\rho }_{1} W_{20}^{2}(0) +2\rho _{1}W_{11}^{2}(0)),\)

  • \(D=\frac{1}{1+\rho _{1}^{*}\bar{\rho }_{1}+\rho _{2}^{*}\bar{\rho }_{2} + a_{13}\bar{\rho }_{1}\tau _{0}e^{i\omega _{k}\tau _{j}^{k}}},\)

  • \(\rho _{1}=\frac{i\omega _{k}-a_{11}}{a_{12}+a_{13}e^{-i\omega _{k}\tau _{j}^{k}}}, \rho _{2}=\frac{a_{32}}{i\omega _{k}}\rho _{1},\)

  • \(\rho _{1}^{*}=-\frac{i\omega _{k}+a_{11}}{a_{21}}, \rho _{2}^{*}=-\frac{a_{23}}{i\omega _{k}}\rho _{1}^{*}.\)

and

  • \(W_{20}(0)=\frac{ig_{20}}{\omega _{k}}q(0)+\frac{i\bar{g}_{02}}{3\omega _{k}} \bar{q}(0)\),

  • \(W_{11}(0)=\frac{-ig_{11}}{\omega _{k}}q(0)+\frac{i\bar{g}_{11}}{\omega _{k}} \bar{q}(0),\)

  • \(q(0)=(1,\rho _{1}\), \(\rho _{2})\).

Thus, we can compute the following values:

$$\begin{aligned} c_{1}(0)&= \frac{i}{2\omega ^{*}}[g_{20}g_{11}-2| g_{11}|^{2} - \frac{1}{3}| g_{02}|^{2}]+\frac{g_{21}}{2},\\ \beta _{2}&= \text{ Re }(c_{1}(0)),\\ \mu _{2}&= \text{ Re }(\lambda ^{\prime }(\tau ^{*})), \end{aligned}$$

Then we can determine the properties of bifurcating periodic solutions at the critical value \(\tau ^{*}\). According to Case 1 and Case 2 in [29] (p. 202), we have

  1. 1.

    If \(\beta _2<0,~ \mu _{2}>0~ ( \beta _2<0, \mu _{2}<0)\), the bifurcating periodic solutions on the center manifold are stable. This case is referred to as a supercritical bifurcation.

  2. 2.

    If \(\beta _2>0,~ \mu _{2}>0~ ( \beta _2>0, \mu _{2}<0)\), the bifurcating periodic solutions on the center manifold are unstable. This case is referred to as a subcritical bifurcation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, H. & Jiang, W. Stability switches and global Hopf bifurcation in a nutrient-plankton model. Nonlinear Dyn 78, 981–994 (2014). https://doi.org/10.1007/s11071-014-1491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1491-1

Keywords

Navigation