Skip to main content
Log in

Observer-based synchronization of memristive systems with multiple networked input and output delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the synchronization problem of memristive systems with multiple networked input and output delays via observer-based control. A memristive system is set up, and the fuzzy method has been employed to linearize the dynamical system of the memristive system; the networked input and output delays are considered in the synchronization problem of this system. A truncated predictor feedback approach is employed to design the observers. Under certain restrictions, a class of finite-dimensional observer-based output feedback controllers is designed. A numerical example is carried out to demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ananthanarayanan, R., Eser, S., Simon, H., Modha, D.: Proceedings of 2009 IEEE/ACM Conference High Performance Networking Computing; Portland, OR (2009)

  2. Smith, L.: Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies, pp. 433–475. Springer, New York (2006)

    Book  Google Scholar 

  3. Jo, S., Chang, T., Ebong, I., Bhadviya, B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nanotech. Lett. 10, 1297–1301 (2010)

    Article  Google Scholar 

  4. Strukov, D., Snider, G., Stewart, D., Williams, R.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  5. Chua, L.: Memristor-The missing circuit element. IEEE Trans. Circuits Theory 18, 507–519 (1971)

    Article  Google Scholar 

  6. Sharifiy, M., Banadaki, Y.: General spice models for memristor and application to circuit simulation of memristor-based synapses and memory cells. J. Circuits Syst. Comput. 19, 407–424 (2010)

    Article  Google Scholar 

  7. Choi, T., Shi, B., Boahen, K.: An on-off orientation selective address event representation image transceiver chip. IEEE Trans. Circuits Syst. I 51, 342–353 (2004)

    Article  Google Scholar 

  8. Indiveri, G.: A neuromorphic VLSI device for implementing 2-D selective attention systems. IEEE Trans. Neural Netw. 12, 1455–1463 (2001)

    Article  Google Scholar 

  9. Liu, S., Douglas, R.: Temporal coding in a silicon network of integrate-and-fire neurons. IEEE Trans. Neural Netw. 15, 1305–1314 (2004)

    Article  Google Scholar 

  10. Chua, L., Roska, T.: Cellular Networks and Visual Computing: Foundations and Applications. Cambridge University Press, Cambbridge (2002)

    Book  Google Scholar 

  11. Chen, G., Dong, X.: From Chaos to Order: Methodolgies, Perspectives, and Applications. World Scientific, Singapore (1998)

    Google Scholar 

  12. Aghababa, M., Aghababa, H.: Robust synchronization of a chaotic mechanical system with nonlinearities in control inputs. Nonlin. Dynam. 73, 363–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Song, Q.: Design of controller on synchronization of chaotic neural networks with mixed time-varying delays. Neurocompututing 72, 3288–3295 (2009)

    Article  Google Scholar 

  14. Tang, L., Lu, J., Lu, J.: Impact of node dynamics parameters on topology identification of complex dynamical networks. Nonlin. Dynam. 73, 1081–1097 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, D., Zhao, W., Sprott, J., Ma, X.: Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlin. Dynam. 73, 1495–1505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Breve, F., Zhao, L., Quiles, M., Macau, E.: Chaotic phase synchronization and desynchronization in an oscillator network for object selection. Neural Netw. 22, 728–737 (2009)

    Article  Google Scholar 

  17. Yu, W., Cao, J.: Adaptive Q–S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks. Chaos 16, 023119 (2006)

    Article  MathSciNet  Google Scholar 

  18. Wang, Z.D., Ho, D.W.C., Liu, Y.R., Liu, X.H.: Robust \(H_\infty \) control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 45, 684–691 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z.D., Liu, Y.R., Wei, G.L., Liu, X.H.: A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances. Automatica 46, 543–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z.D., Wei, G.L., Feng, G.: Reliable \(H_\infty \) control for discrete-time piecewise linear systems with infinite distributed delays. Automatica 45, 2991–2994 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, L.G., Zheng, W.X.: Weighted \(H_\infty \) model reduction for linear switched systems with time-varying delay. Automatica 45(1), 186–193 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, L.G., Feng, Z.G., Zheng, W.X.: Exponential stability analysis for delayed neural networks with switching parameters: average dwell time approach. IEEE Trans. Neural Netw. 21(9), 1396–1407 (2010)

    Article  Google Scholar 

  23. Wu, L.G., Feng, Z.G., Lam, J.: Stability and synchronization of discrete-time neural networks with switching parameters and time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 24(12), 1957–1972 (2013)

    Article  Google Scholar 

  24. Wu, L.G., Yao, X.M., Zheng, W.X.: Generalized \(H_2\) fault detection for Markovian jumping two-dimensional systems. Automatica 48(8), 1741–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, L.G., Zheng, W.X.: Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45(9), 2120–2127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, H.H.: Exploring human hand capabilities into embedded multifingered object manipulation. IEEE Trans. Industr. Inform. 7(3), 389–398 (2011)

    Article  Google Scholar 

  27. Zhou, Q., Shi, P., Liu, H.H., Xu, S.Y.: “Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems”, IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(6), 1608–1619 (Dec. 2012)

  28. Huang, T.W., Li, C.D., Duan, S.K., et al.: Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans. Neural Netw. Learn. Syst. 23(6), 866–875 (2012)

    Article  Google Scholar 

  29. Li, C.D., Wu, S.C., Feng, G., Liao, X.F.: Stabilizing effects of impulses in discrete-time delayed neural networks. IEEE Trans. Neural Netw. 22(2), 323–329 (2011)

    Article  Google Scholar 

  30. Li, C.D., Feng, G.: Stabilizing effects of impulse in delayed BAM neural networks. IEEE Trans. Circuits Syst. II 55(12), 1284–1288 (2008)

    Article  Google Scholar 

  31. Ramini, A.H., Younis, M.I., Sue, Q.: A low-g electrostatically actuated resonant switch. Smart Mater. Struct. 22, 0964–1726 (2013)

    Article  Google Scholar 

  32. Alkharabsheh, S., Younis, M.I.: Dynamics of MEMS arches of flexible supports. J. Microelectr. Syst. 22(1), 216–224 (2013)

    Article  Google Scholar 

  33. Ouakad, H., Younis, M.I.: Dynamic response of slacked carbon nanotube resonators. Nonlin. Dynam. 67, 1419–1436 (2012)

    Article  MathSciNet  Google Scholar 

  34. Liberis, N.B., Krstic, M.: Lyapunov stability of linear predictor feedback for distributed input delays. IEEE Trans. Autom. Control 56, 655–660 (2011)

    Article  Google Scholar 

  35. Liberis, N.B., Krstic, M.: Stabilization of linear strict-feedback systems with delayed integrators. Automatica 46, 1902–1910 (2010)

    Article  MATH  Google Scholar 

  36. Liberis, N.B., Krstic, M.: Delay-adaptive feedback for linear feedforward systems. Syst. Control Lett. 59, 277–283 (2010)

    Article  MATH  Google Scholar 

  37. Liu, Y., Wang, Z.D., Liang, J., Liu, X.: Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Trans. Syst. Man Cybern. B Cybern. 13, 1314–1325 (2008)

    Google Scholar 

  38. Mirkin, L.: On the approximation of distributed-delay control laws. Syst. Control Lett. 51, 331–342 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Artstein, Z.: Linear systems with delayed controls. IEEE Trans. Automat. Control 27, 869–879 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gu, K.: An integral inequality in the stability problem of time-delay systems. In Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2805–2810

  41. Krstic, M.: Compensation of infinite-dimensional actuator and sensor dynamics. IEEE Control Syst. Mag. 30, 22–41 (2010)

    Article  MathSciNet  Google Scholar 

  42. Manitius, A., Olbrot, A.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Automat. Control 24, 541–553 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Van Assche, V., Dambrine, M., Lafay, J., Richard, J.: Some problems arising in the implementation of distributed-delay control laws. in 38th IEEE Conference on Decision and Control, Phoenix, AZ

  44. Watanabe, K., Ito, M.: An observer for linear feedback control laws of multivariable systems with multiple delays in the controls and outputs. Syst. Control Lett. 1, 54–59 (1981)

    Article  MATH  Google Scholar 

  45. Zhou, B., Lin, Z., Duan, G.: Global and semi-global stabilization of linear systems with multiple delays and saturations in the input. SIAM J. Control Optim. 48, 5294–5332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou, B., Lin, Z., Duan, G.: A truncated prediction approach to stabilization of linear systems with long time-varying input delay. in the 50th IEEE Conference on Decision and Control and European Control Conference, pp. 4146–4151, Orlando, Florida, December 12–15

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China under Grant 61125303, the National Basic Research Program of China (973 Program) under Grant 2011CB710606, the Program for Science and Technology in Wuhan of China under Grant 2014010101010004, and the Program for Changjiang Scholars and Innovative Research Team in University of China under Grant IRT1245. This publication was made possible by NPRP grant \(\sharp \) 4-1162-1-181 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author[s].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Zeng, Z. & Huang, T. Observer-based synchronization of memristive systems with multiple networked input and output delays. Nonlinear Dyn 78, 541–554 (2014). https://doi.org/10.1007/s11071-014-1459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1459-1

Keywords

Navigation